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The present fMRI study explores the connectivity among motor areas

in a bimanual coordination task using the analysis framework of

structural equation modeling (SEM). During bimanual finger tapping

at different frequency ratios, temporal correlations of activations

between left/right primary motor cortices (MI), left/right PMdc (caudal

dorsal premotor area) and supplementary motor cortex (SMA) were

detected and used as inputs to the SEM analysis. SEM was extended

from its traditional role as a confirmatory analysis to be used as an

exploratory technique to determine the most statistically significant

connectivity model given a set of cortical areas based on anatomic

constraints. The resultant network exhibits coupling from left MI to

right MI, links from both PMs to the two MIs, a negative interaction

from left PM to right PM, and functional influence from SMA to right

MI and right PM, revealing contributions of these areas to bimanual

coordination.
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Introduction

The coupling or interference between dual motor tasks by two

hands is familiar in our daily experience and has been investigated

in many psychophysical and MEG experiments (Chan and Chan,

1995; Franz et al., 1991; Jirsa et al., 1998; Mayville et al., 2001;

Tuller and Kelso, 1989; Yamanishi et al., 1980). For example, in an

experimental study on spatial coupling of dual motor tasks (Chan

and Chan, 1995), participants were asked to perform continuous

simultaneous drawing of circles and straight lines using both hands

simultaneously. There was a strong tendency for the line to become
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more circle-like and the circle to become more line-like, as

measured by orientation ratio (i.e., height/width) of the circle or

line. Such phenomena were termed a spatial magnet effect, and

such interference was referred to as bcouplingQ between the left and
right motor systems (Franz et al., 1991; Kelso et al., 1988).

In addition to the interaction described above, the frequency

ratios (between two hands) for which polyrhythmic bimanual

movement is stable were found to follow a Farey series.

Specifically, with a/b and c/d as two base levels of stable

frequency ratios, the ratio (a + b) / (c + d) produces the frequency

ratio for the next level of (decreased) stability (Treffer and Turvey,

1993). In the experiments of bimanual circle/line drawing task

described above, it was shown that the spatial coupling (or

interference, i.e., the deviation of orientation ratio of the drawn

circles from that of the perfect circle) was the strongest at the ratio

of 1/1 (Level 0), the second strongest at 1/2 (Level 1), and the third

strongest at 2/3 (Level 2) (Chan and Chan, 1995).

In the context of similar bimanual coordination tasks, such as

anti-phase vs. in-phase hand movement or poly-rhythmic finger

tapping, recent functional imaging studies (Debaere et al., 2003,

2004; De Weerd et al., 2003; Immisch et al., 2001; Jancke et al.,

2000; Koeneke et al., 2004; Sadato et al., 1997; Toyokura et al.,

1999) indicated strong involvement of SMA in motor coordination

between two hands. The role of premotor area in the bimanual

motor coordination was also studied in depth by fMRI (Debaere et

al., 2003, 2004; De Weerd et al., 2003; Immisch et al., 2001;

Koeneke et al., 2004; Sadato et al., 1997). In recent fMRI and

electrophysiological studies (Debaere et al., 2003, 2004; De Weerd

et al., 2003; Donchin et al., 1998; Koeneke et al., 2004; Toyokura

et al., 1999), an interaction between contralateral primary motor

cortices was found during bimanual coordination tasks. Subcortical

structures such as basal ganglia and cerebellum were also found

activated during bimanual tasks (Tracy et al., 2001; Debaere et al.,

2003, 2004).

Two biological models of motor coordination attempted to

explain these coupling phenomena (Cardoso de Oliveira, 2002;

Debaere et al., 2003, 2004): generalized motor programs (GMP)
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and intermanual crosstalk model. The GMP was inspired by the

strong tendency for spatiotemporal similarity of bimanual

movements and proposed that there could be a common motor

plan for both hands (Schmidt, 1975). In contrast to GMP, the

theory of intermanual crosstalk generally suggested that the

interactions between the movements of the two arms resulted

from partial intermingling (crosstalk) between two independent

manual motor plans (Marteniuk and MacKenzie, 1980). Alter-

natively, GMP could be applied in a hand-specific manner in

which the two independent motor plans of the crosstalk model

can be viewed as the lowest level of the GMP.

Despite this great body of work, the underlying neural

network responsible for bimanual coordination is far from well

understood; questions remaining to be answered include where

the GMP is generated and whether there exists crosstalk

between bilateral primary motor cortices, premotor areas and

SMA (Cardoso de Oliveira, 2002; Kelso et al., 1988). Neural

interactions, or interchanges of neuronal (electrical or chemical)

signals between different brain sites, may be one of the keys to

understanding these motor coordination phenomena (Sadato et

al., 1997), given that most existing literature (De Weerd et al.,

2003; Immisch et al., 2001; Jancke et al., 2000; Koeneke et al.,

2004; Toyokura et al., 1999) indicates that bimanual motor

coordination requires a group of cortical regions but does not

provide detailed information on interactions and couplings

between these regions.

Many challenges exist in the analysis of fMRI data to

ascertain connectivity relationships across motor cortices during

bimanual coordination tasks. First, the widely used correlation

analysis across multiple spatial regions cannot reveal causal

directions. This is because a correlation coefficient only

indicates the degree with which two time courses co-vary with

each other, but is not able to provide directional information on

the interaction between these two regions. A second challenge

is that the observed temporal latency of the BOLD response

between different brain areas cannot be used to ascertain the

temporal order of neural activities. This occurs because the local

hemodynamic response, which depends on the local physiology,

could be region specific, blur or delay the temporal evolution of

BOLD signals, and make it unable to reflect the timing of

neuronal events at different brain sites. Consequently, observed

temporal differences in event-related paradigms are not reliable

for retrieving information about the direction of the interaction.

The third challenge is that many traditional analysis methods

fail to provide a complete account of interactions if more than

two brain regions are involved. When studying more than two

regions, each one can interact with several other regions. One

region can affect another directly or indirectly, i.e., passing

through a third party in the model, and can be affected by

several regions. As a result, correlation of two areas could

include both direct and indirect effects, and a correlation

analysis cannot tease these apart. For this kind of bmany-body

problemQ in neural interactions, structural equation modeling

provides a unique analysis framework.

Structural equation modeling (SEM) is a statistical technique

that is able to examine causal relationships between multiple

variables. SEM approaches the data differently from the usual

statistical methods such as multiple regression or ANOVA. The

parameters in the SEM model are connection strengths or path

coefficients between different variables, which reflect the effective

connectivity in our neural network model. Parameters are estimated
by minimizing the difference between the observed covariances

and those implied by a structural or path model. SEM was initially

developed and applied in biology, psychology, economics, and

other social sciences (Wright, 1920). In 1994, hypothesizing a

connectivity model based on prior knowledge of anatomy and

connectivity, McIntosh and Gonzalez-Lima (1994) applied SEM to

PET data, demonstrating the dissociation between ventral and

dorsal visual pathways in object and spatial vision. SEM was also

used to characterize connectivity changes within the motor system

of Parkinsonian patients (Grafton et al., 1994). Büchel and Friston

(1997) used SEM analysis in an fMRI study to investigate the

nonlinear interactions among V1, V5, posterior parietal cortex, and

prefrontal cortex. More recently, Maguire et al. (2001) compared

the structural equation models between human brains with

and without bilateral hippocampal damages during a memory

retrieval task.

To date, SEM has been used as a confirmatory analysis

technique. Most existing studies only compare a couple of possible

connectivity models derived from prior knowledge. But in the case

when most connections are not known or the complexity of the

anatomic network leads to a large number of possibilities, the

traditional network analysis method cannot be applied. In this

paper, we adapt SEM for exploratory analysis of fMRI data and

demonstrate that such an analysis is capable of identifying the best

model from an ensemble of all possible models using compre-

hensive sorting of multiple fit indices. This is demonstrated in the

functional neural network for bimanual motor coordination, using a

finger-tapping task involving two hands at two frequency ratios.
Materials and methods

fMRI experiment

Seven right-handed subjects participated in this study according

to the guidelines set forth by the institutional review board at

Emory University. Informed consent was obtained from all

subjects. Of these, five were male and two were female with age

range from 18 to 31 years, and subjects with life backgrounds that

would lead to special motor skills, e.g., extensive training in piano,

were excluded. Anatomical scans were acquired using a T1-

weighted MPRAGE sequence (TI/TR/TE/Flip angle: 800 ms/25

ms/6 ms/158; matrix: 256 � 256 � 140; FOV: 256 � 256 � 140

mm3). Two oblique axial slices were acquired to cover the motor

regions of interest. Data were acquired on a 3-T Siemens Trio

whole body scanner using a gradient echo EPI sequence (TR/TE/

Flip angle: 1 s/32 ms/908; slice: 5.5 mm; matrix: 64 � 64; FOV: 20

� 20 cm2). Subjects were visually cued to perform bimanual finger

tapping at 1/1 (left and right index fingers at 2 Hz) or at 1/2 (left

finger at 2 Hz and right finger at 4 Hz) ratios or unimanual tapping

(2 Hz tapping either left only or right only). The slice prescriptions

along with the sequence parameters were experimentally designed

for anatomical coverage and to provide the additional benefit of a 2

Hz auditory pace arising from the imaging gradients. Subjects were

allowed to practice the bimanual task prior to scanning and rested

in a supine position inside the MR scanner during the imaging

study, with their arms extended parallel to the trunk so that they

could comfortably tap with the index fingers.

The bimanual tasks occurred in 40-s blocks of finger tapping

alternated with 20-s intervals rest periods (without tapping),

lasting for a total of 8 min (Fig. 1): Left(2/0)–Right(0/2)–



Fig. 1. Paradigm design. The columns represent the frequency ratio of tapping between left and right hands. The rows represent the temporal axis of

experimental paradigm, and the boxcar shapes on the upper right show two basic blocks in the fMRI design.
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L/R(1/1)–L/R(1/2)–L/R(1/1)–L/R(1/2)–L/R(1/1)–L/R(1/2). A sec-

ond run was acquired with reversed temporal ordering [L/R(1/

2)–L/R(1/1)–L/R(1/2)–L/R(1/1)–L/R(1/2)–L/R(1/1)–Right(0/2)–

Left(2/0)]. In a third run, unimanual tapping was performed for

the purpose of verification of bimanual behavioral performance

and major functional motor areas, again with 40-s tapping and

20-s rest periods: Right (0/1)–Left(1/0)–Right(0/1)–Left(1/0)–

Right(0/1)–Left(1/0)–Right(0/2)–Left(2/0).

Head motion was corrected and activated areas were detected

using BrainVoyager (Maastricht, Netherlands). For each subject’s

bimanual data, activation maps were obtained using a t-test

between all bimanual motor conditions [including L/R(1/1) and

L/R(1/2)] and rest baselines, with statistical significance P b 0.001

and cluster size above 5 pixels.

Anatomical model

For SEM analysis, our regions of interests (ROIs) were chosen

based on functional activation maps detected in the bimanual tasks

(Fig. 2) and anatomical criteria outlined by neurological data in the
Fig. 2. The regions of interest (ROIs). Left: the slice position of functional MR im

typical activated areas detected in the bimanual coordination task, with different co

using a t-test between all bimanual motor conditions and rest baselines with stati
literature (Baker et al., 1999; Roland and Zilles, 1996) as follows.

ROIs were restricted to five major cortical motor areas: left/right

MI, left/right dorsal premotor area and supplementary motor area

(SMA). MI (Brodmann’s area 4), i.e., primary motor cortex, was

defined as the area anterior to the wall of the central sulcus and

posterior to the midline of the precentral gyrus. The caudal dorsal

premotor cortex (PMdc, Brodmann’s area 6), often simply referred

to as premotor cortex (PM), was defined as the area located

caudally to the superior precentral sulcus, rostrally to the anterior

wall of the precentral sulcus, and medially to the lateral part of the

superior frontal gyrus (Dum and Strick, 1991; Roland and Zilles,

1996). The SMA was defined as the area caudally adjacent to the

anterior lip of the precentral gyrus and laterally bordered by the

medial part of the superior frontal gyrus.

With the above ROIs, all possible two-way interactions are

considered in our exploratory analysis, except the paths starting

from MIs because the primary motor cortices are assumed to be the

end point of this network for the motor tasks used. Consequently,

there are 14 anatomically available links (see Fig. 3). Any

candidate model for effective connectivity for our task should be
ages on a sagittal anatomical image. Right two: the selected ROIs based on

lors representing different motor cortices. The activation map was obtained

stical significance P b 0.001.



Fig. 3. All bprobableQ anatomic links (left) and a candidate model for SEM based on a combination of these links (right).
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based on some combination of these anatomic connections. This

leads to 214 = 16,384 possible models.

Statistical methods

The average time courses from each spatial region were

averaged within each temporal block (or experimental condition)

to avoid the transient hemodynamic effect (Fig. 4), normalized into

percentage scale by subtracting and then dividing by the mean, and

finally concatenating both bimanual runs of every subject to create

an intersubject time series for every ROI. The covariance matrix

was calculated for the five observed variables (normalized,

concatenated, ROI time series).

The 16,384 possible candidate models were automatically

generated using custom software developed in Matlab (Math-

Works, Natick, MA). One of these models is illustrated in Fig. 3.

The SEM software Lisrel 8 (Jfreskog and Sorbom, Scientific

Software International Inc., Chicago, IL) was used to estimate the

statistical significance of each model fitting with the experimental

data. The models were sorted by their performance indices as

described below.

For the assessment of the overall model fit, goodness of fit

index (GFI) and the adjusted goodness of fit index (AGFI) are most

commonly used. AGFI is a more appropriate index of fit than GFI,

in that AGFI accounts for the number of degrees of freedom in the

model [see Eqs. (1) and (2); Byrne, 1994; Gerbing and Anderson,

1993; Hu and Bentler, 1999]. AGFI, however, does not adequately

account for model complexity. We thus also used the parsimony

goodness-of-fit index (PGFI), which is designed to measure the

effects of the model complexity on fitting results [see Eq. (3)]. In

our study, a lower PGFI threshold of 0.1 was used for the selection

of fitted models. These indices are derived by

GFI ¼ 1� tr
X �1

S � I

� �2
" #,

tr
X �1

S

� �2
" #

ð1Þ

where tr indicates the trace operation, S is the covariance matrix,

and R is the estimated S;

AGFI ¼ 1� p pþ 1ð Þ=2df½ � 1� GFIð Þ ð2Þ

where p is the number of observations, and df is the degree of

freedom in the model;

PGFI ¼ df =dfnð ÞGFI ð3Þ

where dfn is the degree of freedom in the null model.

Another index for assessing overall model fit is the standard-

ized residuals. The standardized residuals associated with a
hypothesized model are also informal indices of fit (Byrne,

1994; Gerbing and Anderson, 1993). The largest residual

indicates the overall degree of discrepancy in fitting the

hypothesized and observed covariance matrices with larger values

indicating greater discrepancy, and values approaching zero are

desired.

Besides the overall fit indices, the reported t value of each path

coefficient in the model should be greater than a certain critical

value to reject the null hypothesis that the coefficient is 0. We used

a path coefficient threshold of 0.10 (t N 1.296 and P b 0.10 with a

degree of freedom above 60). Our nominal degrees of freedom are

7 subjects � 16 blocks � 2 runs = 224.

Based on these indices, our ranking method was summarized as

follows. Models were eliminated from evaluation based on two

statistical fit indices (evaluated with complexity index PGFI above

0.1 and t-test all paths significant below 90% confidence).

Surviving models were first sorted based on AGFI and sub-

sequently with the standardized residual.

Verification with improbable models

In addition to the candidate bimanual models, we demonstrate

a verification of SEM by comparing with neurologically

impossible or less probable models. Between each of these five

nodes (ROIs), there should exist 5 � 4 = 20 directional links.

Getting rid of 14 anatomically available paths, we are left with

20–12 = 6 bimprobableQ paths, as illustrated in Fig. 5, left. The

number of models with these six paths is 26 = 64. The same

SEM procedure used for bprobableQ models was applied to these

bimproperQ models.

Reliability analysis via resampling

To assess the dependence of our results on the number of

subjects, we performed an exhaustive resampling test. Specifically,

subsets of data corresponding to one to six subjects were chosen

from the original data set, using every possible combination of

subjects. For example, there are seven possible combinations of

six-subject data sets. Similarly, five-subject data sets have 21, etc.

A confirmatory SEM was applied to each subset of data, using the

top 5 models identified from our exploratory analysis of the seven-

subject data set.

For each data subset, the five models were ranked using the

procedure described above and scored with the Borda count

method (Dym et al., 2002; Zwicker, 1991), e.g., the best model

was given a score of 5, the second model a 4, etc. These scores

were averaged for all combinations of a given subject number.



Fig. 4. Typical time courses (left) from five ROIs and their averages (right) for each task block.
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For example, the Borda count numbers of six subjects were

averaged among all seven combinations.
Results

In the bimanual task, the left and right primarymotor cortices (MI

areas) were robustly activated. The BOLD response in the left MI,

corresponding to the movement of the right hand that interchanged

between the 1/2 frequency ratio condition and 1/1 condition, was

stronger at the 4 Hz rate than at the 2 Hz rate, as illustrated in Fig. 6.
The BOLD signal in the left MI (LMI) averaged across all subjects in

the bimanual tasks is approximately linear with the tapping

frequency (green line in Fig. 6, SlopeLMI, Bima = 0.73) as that in

the unimanual tasks (blue line, SlopeLMI, Unima = 0.88), consistent

with previously published reports about the relationships between

finger movement rate and fMRI signal changes (Rao et al., 1996:

Slope LMI, Rao = 0.76). Furthermore, the signal from the right MI

(RMI) remains almost constant (Fig. 6, red line, Slope RMI, Bima =

0.12) because the left hand was supposed to stay at 2 Hz tapping.

Overall, Fig. 6 indicates that the subjects were following the

instructions and accomplished the bimanual tapping at the desired



Fig. 5. Left: bImprobableQ anatomic links, after omitting bprobableQ links in Fig. 3. Right: The bbestQ model in SEM based on a combination of these

bimprobableQ links, which has the most significant fitting results.
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frequency ratios with acceptable accuracy. As illustrated in the time

courses in Fig. 4, different frequency ratios also elicited differential

responses from the left and right PM areas, and the activation of

SMA was highly correlated with both hands’ movement and

modulated by the task complexity.

With SEM calculations, the best-fitted structural equation

model identified in bimanual task is shown in Fig. 7 (the path

map) and Table 1 (the fitting results). The resultant model exhibits

connections pointing to RMI directly from all other motor regions:

LMI, L/R PM, and SMA. LMI received connection from right/left

premotor cortices. The right premotor area has a supportive link

from SMA and an inhibitive link from LPM.

For the best model, the GFI is almost 1.0, and the major sorting

index AGFI is as high as 0.9995. The PGFI of this model has a

very low value of 0.0667. The largest standardized residual,

another sorting index, is 0.0257. The ratio of v2 and degree of

freedom in the model is 0.0088, and the P value of v2 reaches the

0.925 level. The RMSEA value is close to 0, corresponding to a P

value of 0.935. The t values of all path coefficients are above the

threshold level of 1.296 associated with P = 0.90 significance, with

most of them (6 of 8) reaching a statistical significance level of P =
Fig. 6. Intersubject averaged MI activations vs. tapping rate. Blue line: The

linear tendency of BOLD signal from LMI at unimanual task, according to

movement rate. Purple line: The linear tendency of BOLD signal from RMI

at unimanual task. Green line: The linear tendency of BOLD signal from

LMI at bimanual task, which corresponded to right hand’s movement

between 2 and 4 Hz. Red line: The BOLD signal from RMI at bimanual

task, which corresponded to left hand’s consistent movement at 2 Hz, but

shown respectively with right hand’s switching between 2 and 4 Hz.
0.95. Other indices given by SEM also indicate an excellent fit (as

seen in the fitting results Table 2). For example, the normed fit

index (NFI) and the comparative Fit Index (CFI) of this model

reached the maximum value of 1.00. All these provide strong

evidence that the model fits the data well.

The resampling shows that the best-fit model from the seven-

subject data is also consistently the highest-ranking model for data

subsets consisting of four or more subjects (Table 3). In addition,

the ranking for the six-subject data is the same as that of the seven-

subject data, suggesting that the exploratory SEM analysis

stabilizes after six subjects for this particular study.
Discussion

In confirmatory studies (Büchel and Friston, 1997; Grafton et

al., 1994; Maguire et al., 2001; McIntosh and Gonzalez-Lima,

1994), only a few selected models are usually examined in the

structural equation estimations. Our exploratory approach, based

on anatomic constraints, compares a large number of possible

models and effectively avoids the possibility of missing the most

appropriate model in the final result. The comparison between

models themselves is a complicated procedure, and multiple

statistical indices must be used (Hu and Bentler, 1999; MacCallum

and Austin, 2000). Although different authors emphasize the

importance of different indices, based on our observation, most of

these indices yield very similar sorting orders among the models.

In this study, a validation of our exploratory approach was

performed via a confirmatory analysis of resampled data. This

analysis assessed the dependence on the number of subjects, given

our experimental design, and the reproducibility of the ranking.
Fig. 7. The path map and weights for the best connectivity model in

bimanual tasks.



Table 1

The path weight for each connectivity path in the final resulted bimanual

model (Fig. 7)

Path Path weight Standardized

path weight

Standard

error

t value

LMIYRMI 0.147 0.491 0.018 8.260

RPMYRMI 0.368 0.381 0.059 6.288

LPMYRMI 0.822 0.708 0.146 5.623

SMAYRMI �0.564 �0.540 0.138 4.092

RPMYLMI 0.392 0.122 0.285 1.374

LPMYLMI 2.014 0.519 0.344 5.862

LPMYRPM �0.415 �0.344 0.231 1.801

SMAYRPM 0.978 0.901 0.208 4.713

Note. Standardized path weight: The path weights are standardized by the

ratio of the standard deviations of the two connected variables, with the

standard deviation of the causal variable constituting the denominator. This

kind of standardized coefficient can express the relative response of the

dependent variable for a standard deviation change in the explanatory

variable.
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Our results indicate that, with a large enough sample size, the

selection of the best model is very stable (Table 3), demonstrating

that the method is robust and we had a sufficient number of

subjects for this study.

It is important to mention the issue of multiple comparisons in

our method, which is a common pitfall in inference-based statistics.

The issue is that we have a single data set to which we have applied

more than 16,000 models. Based on chance alone, such a

procedure is bound to produce significant models. Our approach

is valid, then, only as an exploratory analysis. While our end result

is a bbestQ model, this actually should be viewed as a hypothesis—

generating result to be tested with new, independent data.

From the best-fitted model (Fig. 7), it can be seen that four

paths are connected with right MI; one interpretation is that the left

hand of these subjects is nondominant and requires more support

from other motor related regions including right/left premotor areas

and SMA. The interaction from left MI to right MI agrees well with

the expected involvement of contralateral MI in bimanual
Table 2

The overall fit indices for the best bprobableQ model (column A) and the

best bimprobableQ model (column B) inferred by SEM

Model A: Best

bprobableQ
B: Best

bimprobableQ

Goodness of fit

index (GFI)

1.000 0.987

Adjusted goodness

of fit index (AGFI)

0.9995 0.9243

Parsimony goodness

of fit index (PGFI)

0.0667 0.165

v2/degree of freedom 0.00882 2.148

P value for v2 (0.925) (0.143)

Root mean square error

of approximation (RMSEA)

0.0 0.102

90% confidence interval

for RMSEA

(0.0–0.08612) (0.0–0.297)

P value for test of close

fit (RMSEA b 0.05)

(0.935) (0.197)

Largest standardized residual 0.0257 1.051

Normed fit index (NFI) 1.000 0.982

Parsimony normed fit index (PNFI) 0.100 0.327

Comparative fit index (CFI) 1.000 0.990
coordination tasks. For example, Donchin et al. (1998) found

unique cells in the monkey’s primary motor cortex that were

specifically activated with bimanual movements. Furthermore, the

primary motor cortex has been observed to contain almost equal

proportions of bimanually related neurons as the SMA (Donchin et

al., 1998; Kazennikov et al., 1999; Kermadi et al., 1998). As in the

GMP model, the dominant (right) hand may act as a bpace-makerQ
to drive the movement of the left hand, and this may be one cause

of the temporal and spatial couplings. The finding here is also

supported by previous studies of unimanual tasks, which revealed

that the movement of the nondominant hand would also activate

the dominant motor cortices, such as LMI (Kim et al., 1993).

Another important inference from our result is that the links

between right PM and the two MIs play an important role in the

temporal interference effect of bimanual coordination. The nature

of interactions with bilateral MIs from the same PM area implies a

source of disturbance in accuracy of bimanual performance, a

notion that can be explained by the cross-talk model. If it is

assumed that motor preparation in PM is a serial process, bimanual

movements are prepared not simultaneously, but on a one-by-one

basis. Some previous findings (Kurata, 1993; Sadato et al., 1997)

suggest that the PMd may have a role in the integration of

information, such as the sequence of finger movements, from other

areas (e.g., SMA) to coordinate the left finger movements with that

of its counterpart. According to the resultant best network map in

the present study, the right premotor is perhaps the most likely

candidate for the bottleneck of this serial preparation process in our

task. The negative link from LPM to RPM can be interpreted by

the conflicts of the motor preparations between the two PM areas,

consistent with the intermanual cross-talk model. The result also

agrees with the common presence of RPM in a number of

functional imaging reports of bimanual motor coordination (De

Weerd et al., 2003; Goerres et al., 1998; Immisch et al., 2001;

Sadato et al., 1997).

The fact that SMA has functional paths pointing to RPM and

RMI is perhaps related to its well-known role in motor planning,

especially spatial planning. SMA is one of the structures revealed

early on by imaging studies of bimanual tasks (Immisch et al.,

2001; Jancke et al., 2000; Sadato et al., 1997; Stephan et al., 1999;

Toyokura et al., 1999). The coupling between LMI and RMI has to

be inhibited, probably resulting in the observed negative link from

SMA to RMI. The link also agrees with the neuroanatomic

findings that the PMd has dense cortico-cortical input from SMA

(Koeneke et al., 2004; Kurata, 1991). Like most other reports, our

present study does not distinguish between the right and left SMAs

because they lie in close proximity and are not readily separable in

fMRI. However, the asymmetry in the functional activation of the
Table 3

The average Borda count from 1 to 6 subjects for reliability analysis of the

best 5 models obtained in 7-subject data

The highest-scoring model for each data size is highlighted.
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left/right SMAs should be kept in mind and may be detectable in

future fMRI studies with higher spatial resolution.

Of course, the bimanual motor activity also involves subcortical

structures, particularly basal ganglia and cerebellum. In this study,

we focused only on the cortical areas involved in the bimanual task

to reduce the model complexity. Even though this model did not

include all involved regions, as with any SEM study that examines

effective connectivity, its results are still relevant because any

covariance between cortical regions mediated by subcortical

structures would be indirectly reflected in our cortical model.

Furthermore, for demonstrating the utility of exploratory SEM, this

cortical model is sufficient. Nonetheless, in interpreting our results,

one should keep in mind the limitation of the ROIs.
Conclusion

Exploratory SEM analysis was applied to investigate the

coupling mechanism between cortical motor areas in bimanual

coordination. Given all probable models with connections between

left/right MI, left/right PMdc (caudal dorsal premotor area), and

SMA (supplementary motor area), the exploratory analysis was

able to find a bbestQ model, which was confirmed to be re-

producible across data subsets. The present study demonstrates the

capability of SEM for exploring candidate models of effective

connectivity related to a neuronal task to provide the best model

for hypothesis testing of more extensive experimental data. The

bbestQ model exhibits positive interactions from left MI to right

MI, from left/right PMs to both MIs, and from SMA to right MI

and right PM, and a negative link from left PM to right PM. This

result is consistent with previous models of bimanual coordination.
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