
Brain Topography, Volume 12, Number 1, 1999 61

Fuzzy Segmentation Spatiotemporal Patterns of
Cognitive Potential into Microstates

Shu Zhou*#, Chunmao Wang*, Jinghan Wei*, and Shall Wu^

Summary: Fuzzy c-mean algorithm was applied to segment spatiotemporal patterns of brainwave into microstates and memberships. The optimal
clustering number was estimated with both the trends of objective function and the eigenvalue number of microstates. Comparable spatial patterns
may occur at different temporal moments in consideration of fuzzy index that is beyond the limit of serial processing. Those techniques were illustrated
with multichannel event-related potentials recorded from 9 subjects during Stroop test. Statistical parametric map of F value suggested that significant
task (color decision and word decision) effect involve widespread cortical regions after stimulus onset 280 ms and this result supports the hypothesis
that Stroop interference derives from response competition during post-perception stage. As significant stimulus (congruent stimulus and incongru-
ent stimulus) effect only involves several separate visual regions within 100 ms after stimulus presentation, it may reflect top-down attentional
regulation.

Introduction

Behavioral experiments have suggested that a cog-
nitive process can be divided into several stages. Both
Donders subtraction method and Sternberg additive fac-
tors method hypothesizes that those stages are not over-
lapping each other and occur serially (Coles et al. 1995).
More and more experimental evidences indicate that ful-
filling even a simple cognitive task involves dynamical
cooperation of many cerebral structures or regions. Par-
allel distributed processing becomes an alternative view-
point for understanding mechanism of cognitive
processes (Mesulam 1998). To resolve this, more direct
method and indexes beyond behavioral ones are needed.

As multichannel electroencephalograph (EEG) and
event-related potentials (ERP) reflect functional states of
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cortical network, they are expected to become hopeful
tools for illustrating the above problems. Ironically, it is
more difficult for brainwave processing when more
channel data are available. Classification is usually the
first step of understanding complicated phenomena. We
still stick to this rule when facing spatiotemporal pattern
(STP) of brainwave. A stable and definite STP termed
microstate may become the basic element for compre-
hending cognitive processes (Lehmann and Skrandies
1984; Lehmann 1987).

Segmentation and classification of brainwave is a
fundamental work and has a rather long history. Some
research focused on EEG compression, detection of epi-
lepsy spike and sleep analysis (Bodenstein and Praeto-
rius 1977; Bodenstein et al. 1985). Time domain methods
such as parameter model and correlation analysis usually
need rather long data segments and the temporal stability
of time series must be considered. Furthermore, it is
difficult to understand those time domain features corre-
sponding to EEG segments.

One method of spatial domain brainwave segmen-
tation proposed by the Zurich group depends on the
position of extremum of STP after reference-free transfor-
mation (Lehmann and Skrandies 1984; Lehmann 1987).
It neglects most information contained in the peaks and
troughs of STPs. Recently they purposed a new method
based on c-mean algorithm (CMA) (Pascual-Marqui et al.
1995). This algorithm hypothesizes that each spatial pat-
tern just belongs to one definite microstate (clustering
center or prototype). So it admits serial processing in fact
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and cannot give a satisfactory solution to some interme-
diate spatial patterns.

Fuzzy c-mean algorithm (FCMA) is a better cluster-
ing method derived from CMA (Bezdek 1981). In FCMA,
each sample (spatial pattern) belongs to all clustering
centroids or prototypes (microstates). Memberships var-
ied between 0 and 1, consecutively providing a set of index
for all samples (spatial patterns) including intermediate
ones, which describe the extent of similarity between each
sample and each prototype. FCMA makes it possible to
investigate several neural assemblies operating simulta-
neous within cognitive process quantitatively.

When asked to name the color in which a word is
displayed, one often has the feelings of conflict and effort
if the display color and meaning of the word is incongru-
ent (e.g., the word "red" displayed in green). A longer
reaction time (RT) is observed in comparison with congru-
ent word (e.g., the word "red" displayed in red) and
neutral word (e.g., the word "dog" displayed in green)
(Stroop 1935). This Stroop effect is robust and this task is
often taken as either a test of selective attention or a test of
stimulus-response compatibility, or even a test of seman-
tic processing. Many accounts have been proposed (for a
review, see MacLeod 1991), however the neural substrates
are still not clear. Incongruence between color and mean-
ing was not associated with a delay in the P300, even
though RT was delayed (Duncan-Johnson and Kopell
1981; Ilan and Polich 1999). This phenomenon would
suggest that the interference occur somewhere down-
stream from the system responsible for stimulus evalu-
ation provided that P300 latency is a marker of stimulus
evaluation time. A recent research using ERP found no
significant waveform difference between congruent
stimulus and incongruent one (Posner and Rothbart 1998).
Those findings have given little neuroanatomical infor-
mation. PET studies found activation in anterior cingu-
late associated with incongruent color-names that is still
disputable (for a review, see Coull 1998).

In this paper, we would focus on FCMA and apply it
to segment multichannel ERP, which were recorded dur-
ing a simplified version of the Stroop test. Statistical para-
metric map of F statistic (SPM(F)) is employed to disclose
the spatiotemporal organization of the Stroop effect.

Methods

Fuzzy c-mean algorithm

FCMA minimizes the following objective function
with respect to fuzzy membership uin and cluster centroid
vi(1<i<C),

where {xn}(1 <n<N) consist of potentials or other trans-
form-domain values of M length and N channels ERP, C
(2 < C < M) is the number of clusters, m (1< m <i) is the
fuzziness index. Note that ||*|| is the usual Euclidean

distance. FCMA is executed in the following steps.
1) Initialized vi,0 as small random number. Fixed C,m and
gave a little e >0. Memberships uin of xn belongs to cluster
i such that

3) Repeat steps i), ii) and iii) until Et < e or t > tmax.
Fuzzy index m is often chosen empirically. When m

is close to 1, each spatial pattern trends to be represented
by just one clustering centroid (microstate) and FCMA is
close to CMA. Conversely each spatial pattern trends to
be represented by all clustering centroids (microstates)
equivalently when m getting larger. Pal and Bezdek
(1995) recommended that the best choice for m was prob-
ably in the interval [1.5,2.5].

The result of the FCMA depends on the initial value
of cluster centroid vi,0, and the objective function / often
traps into local minimum. To improve this nonlinear
optimal problem, one can simply execute FCMA repeat-
edly just by setting initial values randomly. The algo-
rithm is fast enough and the result corresponding to the
minimum objective function should be taken as the final
optimal solution.

2) For t = 1, 2,..., tmax,
i) Compute the fuzzy membership uin using

ii) Update the fuzzy centroid vi using

iii) Estimate convergent error Et using
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Figure 1. Four ERP waveforms of grand average over 9
subjects under different experimental conditions: color-
decision task (congruent-black and incongruent-red)
and word-decision task (congruent-green and incongru-
ent-blue) are rather similar. All ERP data with correct
response are processed by Hjorth transformation and nor-
malized before grand averaging.

Determining the optimal number of cluster

The optimal cluster number can be determined by
two methods. One is based on the trends of objection
function against increasing microstate number. Usually
it is a monotonic decreasing curve. The turning point of
the curve indicates the position of the optimal number of
clustering.

Shape similarity among microstates indicate their
redundancy and may be reflected by their linear correla-
tion in statistics. So another method is using decorrela-
tion technique. After getting the cross-correlation matrix
of microstates, its eigenvalues can be estimated and ar-
ranged in decreasing order. The position of optimal clus-
ter number is determined according to the eigenvalue
spectrum when using larger cluster number.

Searching for the optimal segmenting points

Each spatial pattern has several membership func-
tions corresponding to microstates respectively. The op-
timal segmenting points can be defined as the time that
local minimal difference between maximal membership
function and sub-maximal one. As there is the possibility
that such difference curves may have many peaks and
troughs, the optimal segmenting points are usually more
than the number of optimal clusters. The searching steps
may be taken as follows:
1) Compute the deviant {dn} between the maximal and
sub-maximal membership functions - max(uin), sub(uin)
(1< i < C) - of each spatial pattern xn (1< n < N) at each time
point

2) Compare d2k and d2 K + 1(1< k < N/2) and preserve the
smaller of the nearest neighbors and its corresponding
time of { d n } . Thus the length of new series consisting of
the smaller set reduces to half of its original (N/2).
3) Repeat step 2 till the length of new series is close to (C-1).

This searching strategy can shrink the region quickly
and can be also used for getting other local extrema such
as local maximal memberships.

Subjects, experimental paradigm and data
collection

Nine healthy students (male: 4, female: 5) ranged from
21 to 27 years of age took part in the experiment. We used
a simplified Stroop test consisting of four Chinese charac-
ters either "red" or "green" displayed in red or in green
respectively. The duration of each character is 1200 ms and
presented 30 times randomly on the center of black screen
at interval 2000 ms. The distance between screen (character
size 1.8 x1 .8 cm) and subjects is 50 cm, i.e. a visual angle of
2.0x 2.0°. During the color-decision session, subjects were
asked to press a button with their left or right hand respec-
tively according to the color of character. During the word-
decision session, each subject responded to meaning of
character. Both speed and accuracy were measured. The
experimental order was balanced among subjects.

Event-related EEG was recorded from 29 channels
(indexed as figure 1) with linked mastoids as reference
and subjects were instructed to relax. EEG epochs from
150 ms before to 1250 ms after stimulus were amplified
with cutoff frequencies of 0.1 and 100 Hz by means of a
NeuroScan ERP workstation, digitized at 1000 Hz, and
analyzed off-line. Electrode impedance during the ex-
periments did not exceed 5 kO. Trials of 10% ~ 20%
contaminated with ocular, muscular or any other type of
artifacts were inspected visually and rejected.

Data preprocessing and statistical analysis method

In order to get reference-independent data, Hjorth
transformation (the weighted average reference montage)
was applied to average ERP waveform of each subject
(Hjorth 1980; Lemos and Fisch 1991; Curran et al. 1993)

where Pi is the potential value pi, Pj after transformation,
weight rij is the distance between recording electrode
positions i and ;'. This reference-free transformation re-
duces the effect of volume conduction of remote regions
and enhances the role of local activity. Before grand aver-
aging for further statistical analysis, normalization was
carried out across experimental conditions for each sub-
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ject. The minimum from each data point was subtracted
and divided by the difference between maximum and
minimum (where the minimum and maximum values are
computed over all times and sites). After that, a biased
value 0.50 was subtracted so that all amplitude of aver-
aged ERP varied in range of [-0.50, 0.50]. This step is
necessary for variance homogeneity and could avoid the
extra influence of some outliers. Otherwise an individual
ERP with high amplitude may have more influence on
final grand average waveforms or statistical results.

Normalized amplitude of each channel was subjected
to repeated measure analysis of variance (ANOVA) with
two within-subjects factors, stimulus (congruent, incon-
gruent) and task (color decision, word decision). Based
on F value of each channel, SPM(F) was acquired by
interpolation technique of generalized cortical imaging
technique (Zhou et al. 1998). RTs and error rates were also
submitted to the same ANOVA procedure.

Results

Behavioral results and spatiotemporal pattern of
ERP

Table I contains both RTs and error rates. RT within
200 ~ 1000 ms was viewed as correct response. The
significant effect of stimulus (F(1, 236)=42.482, P<.001)
demonstrated the differences in RT produced by congru-
ent and incongruent words. Also the significant effect of
task (F(1, 236)=7.726, P=0.006) demonstrated the differ-
ences in RT produced by color-decision and word-deci-
sion. The interaction effect between stimulus and task
was not significant (F(1, 236)=0.614, P=0.434). No signifi-
cant differences in error rate were found.

Grand average of ERPs over 9 subjects correspond-
ing to the four experimental conditions with correct re-
sponses respectively are rather similar to each other as
figure 1 shows.

Figure 2 is the spatiotemporal pattern of ERP from
-100 ms to 700 ms corresponding to congruent character
with correct responses during color-decision task. Each
spatial pattern is an average activity of 10 ms. There is a
clear repeating phenomenon: spatial patterns of 90 ~ 150
ms reappear at the interval of 190 ~ 270 ms. Those
reappearance patterns are featured by a negative compo-

nent symmetrical to Cz point and a positive component
distributed bilateral posterior associative regions.

FCMA results

When the fuzzy exponent m gets larger, each spatial
pattern of ERP has the tendency of being represented by
all microstates equivalently. Figure 3 shows the influ-
ence of fuzzy exponent. The FCMA result corresponding
to figure 2 consists of 4 microstates and their member-
ships when the fuzzy exponent equals different value
respectively: (a) 1.10, (b) 1.60 and (c) 2.10. A small m
makes FCMA close to CMA. The membership of CMA
is actually either 1 or 0 (all-or-none). Note the corre-
sponding microstates are still similar in spite of varied m.

Figure 4 gives the fuzzy clustering result also corre-
sponding to figure 2 while the cluster number is 8 and the
fuzzy exponent m equals 1.60. The duration of each
microstate was estimated as following: -100 A 91C138 B
195 C 274 D 340 E 438 F 504 G 603 H 700 (ms). Each
alphabet and the numerical value before and after that
represent a certain microstate and its onset and offset
which were determined by minimal difference between
its maximal and sub-maximal memberships. Note that C
microstate appear twice describing the reprise phenome-
non in figure 2. The shape similarity between microstates
and spatiotemporal patterns has suggested that micro-
states are representative. The membership set describes
their extent of similarity.

The optimal number of clustering

When the cluster number gets larger, similar micro-
states appear more. Figure 5 (a) indicates the (objective
function/cluster number) ratio decreased with increas-
ing cluster number (2, 4, 6, 8, 10, and 12). Figure 5 (b)
shows the logarithmic spectrum of eigenvalue normal-
ized by their sum in decreased order. Eigenvalues were
acquired from each correlation matrix with different mi-
crostates number (2,4,6,8,10, and 12). There appears to
be a platform between cluster number 6 and 8. The
position of turning point imply the optimal cluster
number 6. Those results were still corresponding to the
condition of congruent character and color-decision task.

Figure 6 reveals intersubject variability: clustering
results come from three subjects under the condition of
congruent stimulus and color decision task (cluster
number 4, fuzzy exponent 1.60). The FCMA results are
truly data-dependent and each microstate is always loyal
to spatiotemporal patterns of some period it derived from.

SPM(F) results

When using clustering results for further statistical
analysis, one has at least two choices: the advantage

Table I. Reaction times (ms) and error rates (%) (M±S).

9 Subjects

Congruent

Incongruent

Color Decision

402149 1.9 ±2.6

420 ±61 2.4 ±1.9

Word Decision

439 ±41 1.9 ±2.1

448 ±46 2.8 ±3.7



Figure 3. The FCMA results corresponding to figure 2 with
4 microstates and their memberships when the fuzzy ex-
ponent m equals different value: (a) 1.10, (b) 1.60 and (c)
2.10.

Figure 5. The platform starting from cluster number 6
implies the optimal cluster number. (a) The ratio of (ob-
jective function/cluster number) decreased with increas-
ing cluster number. (b) The logarithmic eigenvalue
spectrum of decreased order acquired from each corre-
lation matrix of different microstates number.

Figure 4. The FCMA results corresponding to figure 2 with
fuzzy exponent 1.60,8 microstates and their memberships.
The duration of each microstate is estimated as: -100 A 91
C 138 B 195 C 274 D 340 E 438 F 504 G 603 H 700 (ms).

Figure 2. The spatiotemporal patterns of every 10 ms
average activity during color decision task (congruent
character with correct response). Note the repeat phe-
nomenon: spatial patterns of 90 - 150 ms reappear during
190 ~ 270 ms. Top view and nose upwards.
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Figure 6. The FCMA results reveal intersubject variability,
which derived from three subjects under the same condi-
tions of congruent stimulus, color-decision and fuzzy expo-
nent 1.60.

Figure 7. Statistical parametric map of F value of Stroop
effects, (a) Significant stimulus effect (congruent vs. in-
congruent) involves several separate visual regions during
early perception stage. (b) Significant task effect (color
decision vs. word decision) involves widespread cortical
regions during post-perception stage starting about 280
ms after stimulus onset. Top view and nose upwards.

microstate or the sum of each microstate weighted by its
membership function. The latter is actually close to the
situation of taking primary spatiotemporal patterns di-
rectly for comparison. Since fuzzy clustering analysis for
the four grand average ERPs had similar results, SPM(F)
was applied.

No significant interaction of stimulus x task in each
channel was found. Figure 7 consists of spatiotemporal
patterns of the F value. (a) Significant stimulus effect
(congruent or incongruent) involves several separate re-
gions of visual cortex (including occipital region, occipi-
totemporal and occipitoparietal regions) within 100 ms
after stimuli presentation. (b) Significant task effect
(color-decision or word-decision) starts about 280 ms
after stimulus onset and involves widespread cortical
regions during post-perception stage.

Discussion
fuzzy clustering analysis provides a set of ideal

descriptive index to comprehend parallel distributed
processes. Under the hypothesis of serial processing, only
those spatial patterns that occur at the same time relative
to the onset of stimulus (behavior) are comparable. Such
constraint may be inappropriate as the duration of each

processing stage is not stable and actually varies with
different conditions. In consideration of parallel micro-
states and their memberships, two comparable spatial
patterns may occur at different times. Those fuzzy indi-
ces suggest windows for further measures and analysis
and give us evidence and confidence of alternative selec-
tion beyond time-index. The limit of serial processing
does not exist under such choice.

Not confined to "P1 reprise" reported in a semantic
processing task (Curran et al. 1993), we observed a whole
pattern reappearing during the stimulus evaluation
stage. This reprise phenomenon may be an evidence of
"time-locked multiregional retroactivation" proposed by
Damasio (1989), which would not only be the neural
substrates of recall and recognition but also perception.
Its neural mechanism still needs clarification.

Space-oriented segmenting points give a set of men-
tal chronmetric indices different from the classic measure-
ments based on peaks and toughs of components. The
results suggested the optimal boundary between percep-
tion and post-perception would be at interval of 270 ~ 280
ms. SPM(F) had also indicated the same key translation
period from perception to behavioral response. Signifi-
cant task effect in the post-perception stage starting at
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about 280 ms supports the idea that the feelings of conflict
and effort and longer RT must arise more from the con-
flicting response tendencies.

Significant stimulus effect in the early perception
stage might reflect top-down attentional regulation (Desi-
mone and Duncan 1995). Those visual regions showing
feature selective modulations not only fit well with PET
studies (Corbetta 1998) but also reveal temporal order.

FCMA as a universal method can be employed to
other spatial patterns generated by features of trans-
formed domains (power spectrum, coherence, wavelet,
nonlinear indices etc.) and neuroimaging data. Such
compressed dynamic information may be useful in pat-
tern recognition and other aspects.
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