PSYCH OpenIR  > 脑与认知科学国家重点实验室
An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease
Chen, Hui-Ling1; Wang, Gang2; Ma, Chao3; Cai, Zhen-Nao1,4; Liu, Wen-Bin1; Wang, Su-Jing5,6
摘要In this paper, we explore the potential of extreme learning machine (ELM) and kernel ELM (KELM) for early diagnosis of Parkinson's disease (PD). In the proposed method, the key parameters including the number of hidden neuron and type of activation function in ELM, and the constant parameter C and kernel parameter gamma in KELM are investigated in detail. With the obtained optimal parameters, ELM and KELM manage to train the optimal predictive models for PD diagnosis. In order to further improve the performance of ELM and KELM models, feature selection techniques are implemented prior to the construction of the classification models. The effectiveness of the proposed method has been rigorously evaluated against the PD data set in terms of classification accuracy, sensitivity, specificity and the area under the ROC (receiver operating characteristic) curve (AUC). Compared to the existing methods in previous studies, the proposed method has achieved very promising classification accuracy via 10-fold cross-validation (CV) analysis, with the highest accuracy of 96.47% and average accuracy of 95.97% over 10 runs of 10-fold CV. (C) 2015 Elsevier B.V. All rights reserved.
关键词Kernel Extreme Learning Machine Feature Selection Medical Diagnosis Parkinson's Disease
2016-04-05
语种英语
DOI10.1016/j.neucom.2015.07.138
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号184期号:0页码:131-144
期刊论文类型Article
收录类别SCI
WOS关键词FEEDFORWARD NETWORKS ; CLASSIFICATION ; SPEECH ; PERFORMANCE ; ALGORITHMS ; RELEVANCE ; ACCURACY ; ENSEMBLE ; NUMBER
WOS标题词Science & Technology ; Technology
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000374364300014
资助机构National Natural Science Foundation of China(61303113 ; Zhejiang Provincial Natural Science Foundation of China(R1110261 ; Science and Technology Plan Project of Wenzhou, China(G20140048) ; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education ; Open Projects Program of National Laboratory of Pattern Recognition(201306295) ; Beijing Natural Science Foundation(4152055) ; 61379095 ; LY14F020035 ; 61272018 ; LQ13G010007 ; 61402337 ; LQ13F020011) ; 61572367)
引用统计
被引频次:206[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/19987
专题脑与认知科学国家重点实验室
作者单位1.Wenzhou Univ, Coll Phys & Elect Informat, Wenzhou 325035, Zhejiang, Peoples R China
2.Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
3.Shenzhen Inst Informat Technol, Sch Digital Media, Shenzhen 518172, Peoples R China
4.Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian 710072, Peoples R China
5.Chinese Acad Sci, Inst Psychol, State Key Lab Brain & Cognit Sci, Beijing 100101, Peoples R China
6.Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
推荐引用方式
GB/T 7714
Chen, Hui-Ling,Wang, Gang,Ma, Chao,et al. An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease[J]. NEUROCOMPUTING,2016,184(0):131-144.
APA Chen, Hui-Ling,Wang, Gang,Ma, Chao,Cai, Zhen-Nao,Liu, Wen-Bin,&Wang, Su-Jing.(2016).An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease.NEUROCOMPUTING,184(0),131-144.
MLA Chen, Hui-Ling,et al."An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease".NEUROCOMPUTING 184.0(2016):131-144.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
An efficient hybrid (5212KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Hui-Ling]的文章
[Wang, Gang]的文章
[Ma, Chao]的文章
百度学术
百度学术中相似的文章
[Chen, Hui-Ling]的文章
[Wang, Gang]的文章
[Ma, Chao]的文章
必应学术
必应学术中相似的文章
[Chen, Hui-Ling]的文章
[Wang, Gang]的文章
[Ma, Chao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。