PSYCH OpenIR  > 社会与工程心理学研究室
Personality prediction for microblog users with active learning method
Liu XQ(刘晓倩)1; Dong Nie2; Shuotian Bai2; Bibo Hao2; Tingshao Zhu1; Zhu, Tingshao
2015
通讯作者邮箱[email protected]
会议名称1st International Conference on Human Centered Computing, HCC 2014
会议日期November 27, 2014 - November 29, 2014
会议地点Phnom Penh, Cambodia
出版者Springer Verlag
摘要

Personality research on social media is a hot topic recently due to the rapid development of social medias well as the central importance of personality in psychology, but it is hard to acquire adequate appropriate labeled samples. Our research aims to choose the right users to be labeled to improve the accuracy of predicting. a few labeled users, the task is to predict personality of other unlabeled users Given a set of Microblog users’ public information (e.g., number of followers) and. The active learning regression algorithm has been employed to establish predicting model in this paper, and the experimental results demonstrate our method can fairly well predict the personality of Microblog users. © Springer International Publishing Switzerland 2015.

关键词Active learning Personality Online behavior
学科领域认知心理学
DOI10.1007/978-3-319-15554-8_4
收录类别EI
语种英语
WOS记录号WOS:000362506600004
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.psych.ac.cn/handle/311026/20893
专题社会与工程心理学研究室
通讯作者Zhu, Tingshao
作者单位1.Institute of Psychology, Chinese Academy of Sciences, Lincui Road No. 16, Chaoyang District, Beijing 100101, China
2.University of Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Liu XQ,Dong Nie,Shuotian Bai,et al. Personality prediction for microblog users with active learning method[C]:Springer Verlag,2015.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Personality predicti(554KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu XQ(刘晓倩)]的文章
[Dong Nie]的文章
[Shuotian Bai]的文章
百度学术
百度学术中相似的文章
[Liu XQ(刘晓倩)]的文章
[Dong Nie]的文章
[Shuotian Bai]的文章
必应学术
必应学术中相似的文章
[Liu XQ(刘晓倩)]的文章
[Dong Nie]的文章
[Shuotian Bai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。