PSYCH OpenIR  > 脑与认知科学国家重点实验室
Sparse tensor canonical correlation analysis for micro-expression recognition
Wang,Su-Jing1; Yan,Wen-Jing2; Sun,Tingkai3; Zhao,Guoying4; Fu,Xiaolan5
第一作者Wang, Su-Jing
通讯作者邮箱[email protected]
心理所单位排序1
摘要A micro-expression is considered a fast facial movement that indicates genuine emotions and thus provides a cue for deception detection. Due to its promising applications in various fields, psychologists and computer scientists, particularly those focus on computer vision and pattern recognition, have shown interest and conducted research on this topic. However, micro-expression recognition accuracy is still low. To improve the accuracy of such recognition, in this study, micro-expression data and their corresponding Local Binary Pattern (LBP) (Ojala et al., 2002) [1] code data are fused by correlation analysis. Here, we propose Sparse Tensor Canonical Correlation Analysis (STCCA) for micro-expression characteristics. A sparse solution is obtained by the regularized low rank matrix approximation. Experiments are conducted on two micro-expression databases, CASME and CASME 2, and the results show that STCCA performs better than the Three-dimensional Canonical Correlation Analysis (3D-CCA) without sparse resolution. The experimental results also show that STCCA performs better than three-order Discriminant Tensor Subspace Analysis (DTSA3) with discriminant information, smaller projected dimensions and a larger training set sample size. The experiments also showed that Multi-linear Principal Component Analysis (MPCA) is not suitable for micro-expression recognition because the eigenvectors corresponding to smaller eigenvectors are discarded, and those eigenvectors include brief and subtle motion information. (C) 2016 Elsevier B.V. All rights reserved.
关键词Micro-expression recognition Correlation analysis Sparse representation Tensor subspace
2016-11-19
语种英语
DOI10.1016/j.neucom.2016.05.083
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号214页码:218-232
期刊论文类型Article
URL查看原文
收录类别SCI ; SSCI
WOS关键词LOCAL BINARY PATTERNS ; DISCRIMINANT-ANALYSIS ; FACIAL EXPRESSIONS ; GAIT RECOGNITION ; OPTICAL-FLOW
WOS标题词Science & Technology ; Technology
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000386741300023
WOS分区Q1
Q分类Q1
测试或任务micro-expression recognition;Sparse Tensor Canonical Correlation Analysis (STCCA)
因变量指标recognition accuracy
资助机构National Natural Science Foundation of China(61379095 ; Beijing Natural Science Foundation(4152055) ; Academy of Finland ; Infotech Oulu ; 61375009 ; 61472138 ; 31500875)
引用统计
被引频次:43[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/20932
专题脑与认知科学国家重点实验室
作者单位1.Chinese Acad Sci, Inst Psychol, Key Lab Behav Sci, Beijing 100101, Peoples R China;
2.Wenzhou Univ, Coll Teacher Educ, Wenzhou 325035, Peoples R China;
3.Nanjing Univ Sci & Technol, Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China;
4.Univ Oulu, Dept Comp Sci & Engn, Ctr Machine Vis Res, POB 4500, FI-90014 Oulu, Finland;
5.Chinese Acad Sci, Inst Psychol, State Key Lab Brain & Cognit Sci, Beijing 100101, Peoples R China
第一作者单位中国科学院行为科学重点实验室
推荐引用方式
GB/T 7714
Wang,Su-Jing,Yan,Wen-Jing,Sun,Tingkai,et al. Sparse tensor canonical correlation analysis for micro-expression recognition[J]. NEUROCOMPUTING,2016,214:218-232.
APA Wang,Su-Jing,Yan,Wen-Jing,Sun,Tingkai,Zhao,Guoying,&Fu,Xiaolan.(2016).Sparse tensor canonical correlation analysis for micro-expression recognition.NEUROCOMPUTING,214,218-232.
MLA Wang,Su-Jing,et al."Sparse tensor canonical correlation analysis for micro-expression recognition".NEUROCOMPUTING 214(2016):218-232.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Sparse tensor canoni(2100KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang,Su-Jing]的文章
[Yan,Wen-Jing]的文章
[Sun,Tingkai]的文章
百度学术
百度学术中相似的文章
[Wang,Su-Jing]的文章
[Yan,Wen-Jing]的文章
[Sun,Tingkai]的文章
必应学术
必应学术中相似的文章
[Wang,Su-Jing]的文章
[Yan,Wen-Jing]的文章
[Sun,Tingkai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。