Institutional Repository, Institute of Psychology, Chinese Academy of Sciences
A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition | |
Liu,Yong-Jin1; Zhang,Jin-Kai1; Yan,Wen-Jing3; Wang,Su-Jing2; Zhao,Guoying4,5; Fu,Xiaolan2 | |
第一作者 | Liu, Yong-Jin |
通讯作者邮箱 | [email protected] |
心理所单位排序 | 2 |
摘要 | Micro-expressions are brief facial movements characterized by short duration, involuntariness and low intensity. Recognition of spontaneous facial micro-expressions is a great challenge. In this paper, we propose a simple yet effective Main Directional Mean Optical-flow (MDMO) feature for micro-expression recognition. We apply a robust optical flow method on micro-expression video clips and partition the facial area into regions of interest (ROIs) based partially on action units. The MDMO is a ROI-based, normalized statistic feature that considers both local statistic motion information and its spatial location. One of the significant characteristics of MDMO is that its feature dimension is small. The length of a MDMO feature vector is 36 x 2 = 72, where 36 is the number of ROIs. Furthermore, to reduce the influence of noise due to head movements, we propose an optical-flow-driven method to align all frames of a micro-expression video clip. Finally, a SVM classifier with the proposed MDMO feature is adopted for micro-expression recognition. Experimental results on three spontaneous micro-expression databases, namely SMIC, CASME and CASME II, show that the MDMO can achieve better performance than two state-of-the-art baseline features, i.e., LBP-TOP and HOOF. |
关键词 | Micro-expression optical flow recognition feature |
2016-10-01 | |
语种 | 英语 |
DOI | 10.1109/TAFFC.2015.2485205 |
发表期刊 | IEEE Transactions on Affective Computing |
ISSN | 1949-3045 |
卷号 | 7期号:4页码:299-310 |
期刊论文类型 | Article |
URL | 查看原文 |
收录类别 | SCI |
WOS关键词 | FACIAL EXPRESSIONS ; MODELS |
WOS标题词 | Science & Technology ; Technology |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Cybernetics |
WOS记录号 | WOS:000389328800001 |
WOS分区 | Q1 |
Q分类 | Q1 |
测试或任务 | micro-expression recognition; micro-expression spotting |
因变量指标 | optical flow features; True Positive Rate; recall; precision;F1 score |
统计软件 | Piotr Dollar's Matlab Toolbox |
统计方法 | Main Directional Maximal Difference (MDMD) Analysis |
资助机构 | National Natural Science Foundation of China(61322206 ; Beijing Natural Science Foundation(4152055) ; Open Projects Program of National Laboratory of Pattern Recognition(201306295) ; TNList Cross-discipline Foundation ; Academy of Finland ; Infotech Oulu ; 61521002 ; 61379095 ; 61375009) |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.psych.ac.cn/handle/311026/20934 |
专题 | 脑与认知科学国家重点实验室 |
作者单位 | 1.Tsinghua Univ, Dept Comp Sci & Technol, Tsinghua Natl Lab Informat Sci & Technol, Beijing, Peoples R China; 2.Chinese Acad Sci, Inst Psychol, State Key Lab Brain & Cognit Sci, Beijing 100101, Peoples R China; 3.Wenzhou Univ, Coll Teacher Educ, Wenzhou 325035, Peoples R China; 4.Univ Oulu, Ctr Machine Vis Res, Infotech Oulu, POB 4500, FI-90014 Oulu, Finland; 5.Univ Oulu, Dept Elect & Informat Engn, POB 4500, FI-90014 Oulu, Finland |
推荐引用方式 GB/T 7714 | Liu,Yong-Jin,Zhang,Jin-Kai,Yan,Wen-Jing,et al. A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition[J]. IEEE Transactions on Affective Computing,2016,7(4):299-310. |
APA | Liu,Yong-Jin,Zhang,Jin-Kai,Yan,Wen-Jing,Wang,Su-Jing,Zhao,Guoying,&Fu,Xiaolan.(2016).A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition.IEEE Transactions on Affective Computing,7(4),299-310. |
MLA | Liu,Yong-Jin,et al."A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition".IEEE Transactions on Affective Computing 7.4(2016):299-310. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
A Main Directional M(762KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论