PSYCH OpenIR  > 社会与工程心理学研究室
Movie Recommendation using Unrated Data
Nie, D (Nie, Dong); Hong, LZ (Hong, Lingzi); Zhu, TS (Zhu, Tingshao)
2013
通讯作者邮箱[email protected]
会议名称12th International Conference on Machine Learning and Applications (ICMLA)
会议录名称2013 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2013)
页码344-347
会议日期DEC 04-07, 2013
会议地点Miami, FL
摘要

Model based movie recommender systems have been thoroughly investigated in the past few years, and they rely on rating data. In this paper, we take into account unrated data of genre information to improve the performance of movie recommendation. We propose a novel method to measure users' preference on movie genres, and use Pearson Correlation Coefficient (PCC) to compute the user similarity. A matrix factorization framework is introduced for genre preference regularization. Experimental results on MovieLens data set demonstrate that the approach performs well. Our method can also be used to increase the genre diversity of recommendations to some extent.

学科门类Computer Science
语种英语
文献类型会议论文
条目标识符http://ir.psych.ac.cn/handle/311026/26524
专题社会与工程心理学研究室
作者单位Chinese Acad Sci, Univ Chinese Acad Sci, Inst Psychol, Beijing , Peoples R China.
推荐引用方式
GB/T 7714
Nie, D ,Hong, LZ ,Zhu, TS . Movie Recommendation using Unrated Data[C],2013:344-347.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nie, D (Nie, Dong)]的文章
[Hong, LZ (Hong, Lingzi)]的文章
[Zhu, TS (Zhu, Tingshao)]的文章
百度学术
百度学术中相似的文章
[Nie, D (Nie, Dong)]的文章
[Hong, LZ (Hong, Lingzi)]的文章
[Zhu, TS (Zhu, Tingshao)]的文章
必应学术
必应学术中相似的文章
[Nie, D (Nie, Dong)]的文章
[Hong, LZ (Hong, Lingzi)]的文章
[Zhu, TS (Zhu, Tingshao)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。