Movie Recommendation using Unrated Data | |
Nie, D (Nie, Dong); Hong, LZ (Hong, Lingzi); Zhu, TS (Zhu, Tingshao) | |
2013 | |
通讯作者邮箱 | [email protected] |
会议名称 | 12th International Conference on Machine Learning and Applications (ICMLA) |
会议录名称 | 2013 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2013) |
页码 | 344-347 |
会议日期 | DEC 04-07, 2013 |
会议地点 | Miami, FL |
摘要 | Model based movie recommender systems have been thoroughly investigated in the past few years, and they rely on rating data. In this paper, we take into account unrated data of genre information to improve the performance of movie recommendation. We propose a novel method to measure users' preference on movie genres, and use Pearson Correlation Coefficient (PCC) to compute the user similarity. A matrix factorization framework is introduced for genre preference regularization. Experimental results on MovieLens data set demonstrate that the approach performs well. Our method can also be used to increase the genre diversity of recommendations to some extent. |
学科门类 | Computer Science |
语种 | 英语 |
文献类型 | 会议论文 |
条目标识符 | http://ir.psych.ac.cn/handle/311026/26524 |
专题 | 社会与工程心理学研究室 |
作者单位 | Chinese Acad Sci, Univ Chinese Acad Sci, Inst Psychol, Beijing , Peoples R China. |
推荐引用方式 GB/T 7714 | Nie, D ,Hong, LZ ,Zhu, TS . Movie Recommendation using Unrated Data[C],2013:344-347. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论