PSYCH OpenIR  > 中国科学院心理健康重点实验室
Generalizability of machine learning for classification of schizophrenia based on resting-state functional MRI data
Cai, Xin-Lu1,2,3; Xie, Dong-Jie1,4; Madsen, Kristoffer H.3,5,6; Wang, Yong-Ming1,2,3; Bogemann, Sophie Alida1,2,3; Cheung, Eric F. C.7; Moller, Arne3,8,9; Chan, Raymond C. K.1,2,3,10
第一作者Cai, Xin-Lu
通讯作者邮箱[email protected](chan, raymond c. k.)
心理所单位排序1
摘要

Machine learning has increasingly been applied to classification of schizophrenia in neuroimaging research. However, direct replication studies and studies seeking to investigate generalizability are scarce. To address these issues, we assessed within-site and between-site generalizability of a machine learning classification framework which achieved excellent performance in a previous study using two independent resting-state functional magnetic resonance imaging data sets collected from different sites and scanners. We established within-site generalizability of the classification framework in the main data set using cross-validation. Then, we trained a model in the main data set and investigated between-site generalization in the validated data set using external validation. Finally, recognizing the poor between-site generalization performance, we updated the unsupervised algorithm to investigate if transfer learning using additional unlabeled data were able to improve between-site classification performance. Cross-validation showed that the published classification procedure achieved an accuracy of 0.73 using majority voting across all selected components. External validation found a classification accuracy of 0.55 (not significant) and 0.70 (significant) using the direct and transfer learning procedures, respectively. The failure of direct generalization from one site to another demonstrates the limitation of within-site cross-validation and points toward the need to incorporate efforts to facilitate application of machine learning across multiple data sets. The improvement in performance with transfer learning highlights the importance of taking into account the properties of data when constructing predictive models across samples and sites. Our findings suggest that machine learning classification result based on a single study should be interpreted cautiously.

关键词generalizability machine learning reproducibility schizophrenia spectrum disorders
2019-10-01
语种英语
DOI10.1002/hbm.24797
发表期刊HUMAN BRAIN MAPPING
ISSN1065-9471
页码13
期刊论文类型Article
收录类别SCI
资助项目Beijing Municipal Science & Technology Commission Grant[Z161100000216138] ; National Key Research and Development Programme[2016YFC0906402] ; National Natural Science Foundation of China[81571317] ; CAS key Laboratory of Mental Health
出版者WILEY
WOS关键词COMPUTER-AIDED DIAGNOSIS ; CONNECTIVITY PATTERNS ; TEMPORAL GYRUS ; NETWORK ; ONSET ; ABNORMALITIES ; METAANALYSIS ; BIOMARKERS ; MOVEMENT ; FEATURES
WOS研究方向Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Neurosciences ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000488298800001
资助机构Beijing Municipal Science & Technology Commission Grant ; National Key Research and Development Programme ; National Natural Science Foundation of China ; CAS key Laboratory of Mental Health
引用统计
被引频次:36[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/30156
专题中国科学院心理健康重点实验室
通讯作者Chan, Raymond C. K.
作者单位1.Inst Psychol, Neuropsychol & Appl Cognit Neurosci Lab, CAS Key Lab Mental Hlth, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Sinodanish Coll, Beijing, Peoples R China
3.Sinodanish Ctr Educ & Res, Beijing, Peoples R China
4.Zhejiang Normal Univ, Hangzhou Coll Presch Teacher Educ, Hangzhou, Zhejiang, Peoples R China
5.Univ Copenhagen, Hosp Hvidovre, Danish Res Ctr Magnet Resonance, Ctr Funct & Diagnost Imaging & Res, Copenhagen, Denmark
6.Tech Univ Denmark, Dept Appl Math & Comp Sci, Lyngby, Denmark
7.Castle Peak Hosp, Hong Kong, Peoples R China
8.Aarhus Univ Hosp, Dept Nucl Med, Aarhus, Denmark
9.Aarhus Univ Hosp, PET Ctr, Aarhus, Denmark
10.Univ Chinese Acad Sci, Dept Psychol, Beijing, Peoples R China
第一作者单位认知与发展心理学研究室
通讯作者单位认知与发展心理学研究室
推荐引用方式
GB/T 7714
Cai, Xin-Lu,Xie, Dong-Jie,Madsen, Kristoffer H.,et al. Generalizability of machine learning for classification of schizophrenia based on resting-state functional MRI data[J]. HUMAN BRAIN MAPPING,2019:13.
APA Cai, Xin-Lu.,Xie, Dong-Jie.,Madsen, Kristoffer H..,Wang, Yong-Ming.,Bogemann, Sophie Alida.,...&Chan, Raymond C. K..(2019).Generalizability of machine learning for classification of schizophrenia based on resting-state functional MRI data.HUMAN BRAIN MAPPING,13.
MLA Cai, Xin-Lu,et al."Generalizability of machine learning for classification of schizophrenia based on resting-state functional MRI data".HUMAN BRAIN MAPPING (2019):13.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Generalizability of (1595KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cai, Xin-Lu]的文章
[Xie, Dong-Jie]的文章
[Madsen, Kristoffer H.]的文章
百度学术
百度学术中相似的文章
[Cai, Xin-Lu]的文章
[Xie, Dong-Jie]的文章
[Madsen, Kristoffer H.]的文章
必应学术
必应学术中相似的文章
[Cai, Xin-Lu]的文章
[Xie, Dong-Jie]的文章
[Madsen, Kristoffer H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。