PSYCH OpenIR  > 中国科学院行为科学重点实验室
Fine-grained neural decoding with distributed word representations
Wang, Shaonan1,2; Zhang, Jiajun1,2; Wang, Haiyan1,2,3; Lin, Nan4,5; Zong, Chengqing1,2,6
第一作者Wang, Shaonan
通讯作者邮箱[email protected] (s. wang)
心理所单位排序4
摘要

fMRI word decoding refers to decode what the human brain is thinking by interpreting functional Magnetic Resonance Imaging (fMRI) scans from people watching or listening to words, representing a sort of mind-reading technology. Existing works decoding words from imaging data have been largely limited to concrete nouns from a relatively small number of semantic categories. Moreover, such studies use different word-stimulus presentation paradigms and different computational models, lacking a comprehensive understanding of the influence of different factors on fMRI word decoding. In this paper, we present a large-scale evaluation of eight word embedding models and their combinations for decoding fine-grained fMRI data associated with three classes of words recorded from three stimulus-presentation paradigms. Specifically, we investigate the following research questions: (1) How does the brain-image decoder perform on different classes of words? (2) How does the brain-image decoder perform in different stimulus-presentation paradigms? (3) How well does each word embedding model allow us to decode neural activation patterns in the human brain? Furthermore, we analyze the most informative voxels associated with different classes of words, stimulus-presentation paradigms and word embedding models to explore their neural basis. The results have shown the following: (1) Different word classes can be decoded most effectively with different word embedding models. Concrete nouns and verbs are more easily distinguished than abstract nouns and verbs. (2) Among the three stimulus-presentation paradigms (picture, sentence and word clouds), the picture paradigm achieves the highest decoding accuracy, followed by the sentence paradigm. (3) Among the eight word embedding models, the model that encodes visual information obtains the best performance, followed by models that encode textual and contextual information. (4) Compared to concrete nouns, which activate mostly vision-related brain regions, abstract nouns activate broader brain regions such as the visual, language and default-mode networks. Moreover, both the picture paradigm and the model that encodes visual information have stronger associations with vision-related brain regions than other paradigms and word embedding models, respectively. (C) 2019 Elsevier Inc. All rights reserved.

关键词Neural decoding fMRI word decoding Word class Stimuli paradigm Word embedding models Informative voxels
2020
语种英语
DOI10.1016/j.ins.2019.08.043
发表期刊INFORMATION SCIENCES
ISSN0020-0255
卷号507页码:256-272
期刊论文类型article
收录类别SCI
资助项目Beijing Municipal Science and Technology Project[Z181100008918017]
出版者ELSEVIER SCIENCE INC
WOS关键词NATURAL IMAGES ; BRAIN ; NOUNS ; VERBS ; LANGUAGE ; REVEALS ; OBJECTS
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000489000500016
资助机构Beijing Municipal Science and Technology Project
引用统计
被引频次:18[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/30208
专题中国科学院行为科学重点实验室
通讯作者Wang, Shaonan
作者单位1.CASIA, Natl Lab Pattern Recognit, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing, Peoples R China
4.Inst Psychol, CAS Key Lab Behav Sci, Beijing, Peoples R China
5.Univ Chinese Acad Sci, Dept Psychol, Beijing, Peoples R China
6.CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Shaonan,Zhang, Jiajun,Wang, Haiyan,et al. Fine-grained neural decoding with distributed word representations[J]. INFORMATION SCIENCES,2020,507:256-272.
APA Wang, Shaonan,Zhang, Jiajun,Wang, Haiyan,Lin, Nan,&Zong, Chengqing.(2020).Fine-grained neural decoding with distributed word representations.INFORMATION SCIENCES,507,256-272.
MLA Wang, Shaonan,et al."Fine-grained neural decoding with distributed word representations".INFORMATION SCIENCES 507(2020):256-272.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Fine-grained neural (2867KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Shaonan]的文章
[Zhang, Jiajun]的文章
[Wang, Haiyan]的文章
百度学术
百度学术中相似的文章
[Wang, Shaonan]的文章
[Zhang, Jiajun]的文章
[Wang, Haiyan]的文章
必应学术
必应学术中相似的文章
[Wang, Shaonan]的文章
[Zhang, Jiajun]的文章
[Wang, Haiyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。