PSYCH OpenIR  > 社会与工程心理学研究室
Emotion recognition from human gait features based on DCT transform
Xue, Penghui1; Li, Baobin1; Wang, Ning2; Zhu, Tingshao3
2019-08
通讯作者邮箱[email protected] ; [email protected]
会议名称5th International Conference on Human Centered Computing, HCC 2019
会议录名称Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
页码511-517
会议日期August 5, 2019 - August 7, 2019
会议地点不详
出版者Springer
摘要

Emotion recognition is of great value in human-computer interaction, psychology, etc. Gait is an important pattern of emotion recognition. In this paper, 59 volunteer’s gait data with angry or happy emotion, have been collected by the aid of Microsoft Kinect. The gait data are treated as discrete time signals, and we extract a series of frequency features based on the discrete cosine transform. Simultaneously, we have established emotion recognizing models with SVM, the K-nearest neighbors, and decision tree. The best recognition rate can exceed 80%, which indicates that our proposed features are useful for recognizing emotions.

DOI10.1007/978-3-030-37429-7_51
ISBN号13:9783030374280
收录类别EI
语种英语
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.psych.ac.cn/handle/311026/31314
专题社会与工程心理学研究室
通讯作者Li, Baobin; Zhu, Tingshao
作者单位1.School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing
2.Institute of Psychology Chinese Academy of Sciences, Beijing
3.Beijing Institute of Electronics Technology and Application, Beijing
推荐引用方式
GB/T 7714
Xue, Penghui,Li, Baobin,Wang, Ning,et al. Emotion recognition from human gait features based on DCT transform[C]:Springer,2019:511-517.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
final.pdf(5866KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xue, Penghui]的文章
[Li, Baobin]的文章
[Wang, Ning]的文章
百度学术
百度学术中相似的文章
[Xue, Penghui]的文章
[Li, Baobin]的文章
[Wang, Ning]的文章
必应学术
必应学术中相似的文章
[Xue, Penghui]的文章
[Li, Baobin]的文章
[Wang, Ning]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。