PSYCH OpenIR  > 社会与工程心理学研究室
疲劳对驾驶员认知过程的影响及疲劳事件的提前预测
其他题名The influence of fatigue on driver's cognition process and the early prediction of fatigue events
张伟斌
导师瞿炜娜
2021-06
摘要道路安全及疲劳驾驶一直是政府和公众关注的重要议题。研究显示90%的事故是由驾驶员个体因素造成的。而驾驶疲劳是其中一个主要影响因素。疲劳导致了20%的死亡和严重事故。因此,需要深入探究驾驶员疲劳后的生理、心理、行为特点,并尝试探测和预测疲劳状态,为疲劳驾驶的干预提供帮助,以最大程度提升驾驶安全。 研究一关注的是疲劳对驾驶员认知过程的影响,包括感知加工及决策加工过程,旨在通过实验一和实验二探究疲劳对驾驶员对不同速度估计及风险决策的影响。实验 1a及 2a招募 26名驾驶员,被试需要来两次实验室,一次通过长时间驾驶诱发疲劳后完成速度估计任务及与驾驶情景相关的风险决策任务即打气球任务( BART),另一次在清醒状态下完成同样的任务,疲劳及清醒状态先后顺序在被试间平衡。实验 1a结果发现,驾驶员清醒状态下经过几次练习反馈后估计偏差减少,而在疲劳状态下练习前后的估计偏差没有显著差异,说明被试在疲劳状态下对反馈的学习效应下降。实验 1b及 2b流程同实验 1a及 2a,招募 32名驾驶员,增加疲劳诱发时长,并根据实验 1a及 2a的结果进行任务上的调整。实验 1b结果显示,清醒时被试对速度较慢小车的估计偏差小于速度中等的小车,但是疲劳时估计偏差没有 差异,说明疲劳状态下,对较慢速度车辆位置判断 误差增加。实验 2b结果显示,疲劳状态下调整后打气次数显著低于清醒状态下,即选择更保守。 研究二关注的是疲劳对驾驶员驾驶行为的影响及预测包括横向控制及纵向控制,旨在探究利用脑电信号提前预测疲劳驾驶事件。招募 18名驾驶员,被试需保持当前车道长时间驾驶,并每隔 5分钟报告一次主观疲劳感。驾驶过程中同时记录脑电信号。结果显示横向位移标准差及纵向速度标准差 随时间变化趋势为倒 U型,且和主观报告变化趋势显著相关。结合被试主观及驾驶控制偏差(横向或纵向) ),以 5分钟为单位,提取出三类疲劳阶段 1)清醒阶段:被试主观清醒且驾驶控制偏差较小,2)中度疲劳阶段:被试主观疲劳且驾驶控制偏差较小,3)重度疲劳阶段:被试主观疲劳且驾驶偏差较大。提取出每个阶段前 5分钟的脑电数据,计算EEG四个频带( alpha、 beta、 theta、 delta)的功率值。 利用 Logistic回归模型建模。结果显示,前一个阶段的脑电信号可预测下一个阶段的疲劳分类,预测准确 可达 60%左右;且脑电信号的预测效果优于驾驶指标 (方向盘转角或油门加速度)。 总的来说,本研究发现疲劳后 驾驶员认知资源减少,因此对较慢速度小车的估计偏差增加,并在风险决策任务中表现出冒险倾向下降。此外,研究发现利用脑电信号 可以 提前预测下一个阶段疲劳所诱发的横向及纵向控制不利表现,使用Logistic回归 建模 对清醒、中度疲劳、重度疲劳三分类模型预测准确率可到 60%左右。本研究进一步补充和拓展了驾驶疲劳领域对认知过程影响及疲劳驾驶预测的讨论,同时研究结果可为疲劳驾驶的检测和预警提供指导。
其他摘要Road safety and fatigue driving have always been important issues to the government and the public. Research showed that 90% of road accidents were caused by individual drivers. And driving fatigue is one of the main influencing factors. Fatigue causes 20% of deaths and serious accidents. Therefore, it is necessary to thoroughly explore the physiological, psychological, and behavioral characteristics of the drivers after fatigue, and try to detect and predict the fatigue state, and provide advice for the intervention of fatigue driving, thus improving driving safety in the highest degree. Study 1 focused on the impact of fatigue on the driver’s cognitive process, including perception processing and decision-making processing. This study included two experiments (Experiment 1 and 2) which aimed to explore the impact of fatigue on the driver’s estimation of different speeds and risk-taking in decision-making task respectively. Experiments 1a and 2a recruited 26 drivers. Participants need to come to the laboratory twice, one time to complete the speed estimation task and the risk decision task related to the driving situation (namely, BART) after fatigue (induced by long-term driving), the other time to complete the same task in the awake state. The order of fatigue and awake state is balanced among the subjects. The results of experiment 1a found that the estimated deviation was reduced after several training feedbacks when the driver was awake, but in the fatigue state there was no significant difference, indicating the learning effect of the participants on the feedback in the fatigue state decline. The procedures of Experiments 1b and 2b were the same as Experiments 1a and 2a, recruiting 32 drivers, increasing the duration of fatigue induction, and making task adjustments based on the results of Experiments 1a and 2a. The results of experiment 1b showed that the participants’ estimated deviations of slower cars were smaller than those of medium-speed cars when they were awake, but there was no difference in estimation deviations when fatigued, indicating that the position estimation bias of slower speed vehicles increases. The results of experiment 2b showed that the number of pumping-ups after adjustment in the fatigue state was significantly lower than that in the awake state, that is, the choice was more conservative. Study 2 focused on the impact of fatigue on driver's driving behavior and its early warning, exploring the use of EEG signals to predict fatigue driving events in advance. 18 drivers were recruited and asked to maintain the current lane to drive for a long time, and report subjective fatigue every 5 minutes. EEG signals are recorded at the same time during driving. The results showed that horizontal displacement standard deviation and the longitudinal velocity standard deviation have an inverted U-shaped trend over time, which is significantly related to the subjective report change trend. Combining the subjective fatigue and driving control deviation (horizontal or longitudinal) of the subjects, and taking 5 minutes as the unit, three types of fatigue stages are extracted: 1) Awakening stage: Subjects are subjectively awake and driving control deviation is small, 2) Moderate fatigue stage: Subjectively fatigued and driving control deviation is small, 3) Severe fatigue stage: Subjectively fatigued and driving deviation is large. Extract the EEG data of the 5 minutes prior of each stage, and calculate the power values of the four frequency bands (alpha, beta, theta, delta) of the EEG. Use Logistic regression model for modeling. The results showed that the EEG signal of the previous stage could predict the fatigue state of the next stage, and the prediction accuracy could reach about 60%; and the prediction effect of the EEG signal was better than driving indicators (steering wheel angle or accelerator acceleration). In general, this study found that the cognitive resources of the driver decreased after fatigue, thus the estimation bias for slower speed cars increased, and the risk-taking tendency decreased in a risky decision-making task. In addition, the study found that the EEG signals could predict the adverse performance of lateral and longitudinal control induced by fatigue in the next stage, and the use of Logistic regression modeling to predict the three classification models of awake, moderate fatigue, and severe fatigue could reach an accuracy in approximately 60%. This research further supplements and expands the discussion of the impact of driving fatigue on the cognitive process and the prediction of fatigue driving. In addition, the research results can provide guidance for the detection and early warning of fatigue driving.
关键词疲劳驾驶 速度感知 风险决策 车道偏移 脑电
学位类型硕士
语种中文
学位名称理学硕士
学位专业应用心理
学位授予单位中国科学院心理研究所
学位授予地点中国科学院心理研究所
文献类型学位论文
条目标识符http://ir.psych.ac.cn/handle/311026/39594
专题社会与工程心理学研究室
推荐引用方式
GB/T 7714
张伟斌. 疲劳对驾驶员认知过程的影响及疲劳事件的提前预测[D]. 中国科学院心理研究所. 中国科学院心理研究所,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
张伟斌-硕士学位论文.pdf(1998KB)学位论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[张伟斌]的文章
百度学术
百度学术中相似的文章
[张伟斌]的文章
必应学术
必应学术中相似的文章
[张伟斌]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。