PSYCH OpenIR  > 中国科学院行为科学重点实验室
Exploring self-generated thoughts in a resting state with natural language processing
Li, Hui-Xian1,2,3; Lu, Bin1,2,3; Chen, Xiao1,2,3; Li, Xue-Ying1,3,4,5; Castellanos, Francisco Xavier6,7; Yan, Chao-Gan1,2,3,6,8
第一作者Li, Hui-Xian
通讯作者邮箱[email protected] (yan, cg)
心理所单位排序1
摘要

The present study seeks to examine individuals' stream of thought in real time. Specifically, we asked participants to speak their thoughts freely out loud during a typical resting-state condition. We first examined the feasibility and reliability of the method and found that the oral reporting method did not significantly change the frequency or content characteristics of self-generated thoughts; moreover, its test-retest reliability was high. Based on methodological feasibility, we combined natural language processing (NLP) with the Bidirectional Encoder Representation from Transformers (BERT) model to directly quantify thought content. We analyzed the divergence of self-generated thought content and expressions of sadness and empirically verified the validity and behavioral significance of the metrics calculated by BERT. Furthermore, we found that reflection and brooding could be differentiated by detecting the divergence of self-generated thought content and expressions of sadness, thus deepening our understanding of rumination and depression and providing a way to distinguish adaptive from maladaptive rumination. Finally, this study provides a new framework to examine self-generated thoughts in a resting state with NLP, extending research on the continuous content of instant self-generated thoughts with applicability to resting-state functional brain imaging.

关键词Self-generated thoughts Resting state Think-aloud method Natural language processing Rumination
2021-10-13
语种英语
DOI10.3758/s13428-021-01710-6
发表期刊BEHAVIOR RESEARCH METHODS
ISSN1554-351X
页码19
期刊论文类型评论
收录类别SCI
资助项目National Key R&D Program of China[2017YFC1309902] ; National Natural Science Foundation of China[81671774] ; National Natural Science Foundation of China[81630031] ; Hundred Talents Program and the 13th Five-year Informatization Plan of Chinese Academy of Sciences[XXH13505] ; Beijing Municipal Science & Technology Commission[Z161100000216152]
出版者SPRINGER
WOS关键词META-AWARENESS ; DEFAULT NETWORK ; MIND ; EXPERIENCE ; RUMINATION ; ATTENTION ; VALIDITY ; STREAM ; TOO
WOS研究方向Psychology
WOS类目Psychology, Mathematical ; Psychology, Experimental
WOS记录号WOS:000706906800001
WOS分区Q1
资助机构National Key R&D Program of China ; National Natural Science Foundation of China ; Hundred Talents Program and the 13th Five-year Informatization Plan of Chinese Academy of Sciences ; Beijing Municipal Science & Technology Commission
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/40681
专题中国科学院行为科学重点实验室
通讯作者Yan, Chao-Gan
作者单位1.Inst Psychol, CAS Key Lab Behav Sci, 16 Lincui Rd, Beijing 100101, Peoples R China
2.Univ Chinese Acad Sci, Dept Psychol, Beijing, Peoples R China
3.Chinese Acad Sci, Int Big Data Ctr Depress Res, Inst Psychol, Beijing, Peoples R China
4.Univ Chinese Acad Sci, Sino Danish Coll, Beijing, Peoples R China
5.Sino Danish Ctr Educ & Res, Beijing, Peoples R China
6.NYU Robert I Grossman Sch Med, Dept Child & Adolescent Psychiat, New York, NY 10032 USA
7.Nathan S Kline Inst Psychiat Res, Orangeburg, NY USA
8.Chinese Acad Sci, Magnet Resonance Imaging Res Ctr, Inst Psychol, Beijing, Peoples R China
第一作者单位中国科学院行为科学重点实验室
通讯作者单位中国科学院行为科学重点实验室
推荐引用方式
GB/T 7714
Li, Hui-Xian,Lu, Bin,Chen, Xiao,et al. Exploring self-generated thoughts in a resting state with natural language processing[J]. BEHAVIOR RESEARCH METHODS,2021:19.
APA Li, Hui-Xian,Lu, Bin,Chen, Xiao,Li, Xue-Ying,Castellanos, Francisco Xavier,&Yan, Chao-Gan.(2021).Exploring self-generated thoughts in a resting state with natural language processing.BEHAVIOR RESEARCH METHODS,19.
MLA Li, Hui-Xian,et al."Exploring self-generated thoughts in a resting state with natural language processing".BEHAVIOR RESEARCH METHODS (2021):19.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Hui-Xian]的文章
[Lu, Bin]的文章
[Chen, Xiao]的文章
百度学术
百度学术中相似的文章
[Li, Hui-Xian]的文章
[Lu, Bin]的文章
[Chen, Xiao]的文章
必应学术
必应学术中相似的文章
[Li, Hui-Xian]的文章
[Lu, Bin]的文章
[Chen, Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。