PSYCH OpenIR
Personalized Recycling of Social Psychology in the Context of Big Data in the Context of Transfer Learning
Sun, Yuqi1,2; Zhou, Jie1
摘要

data-language="eng" data-ev-field="abstract">Aiming at the obstacles of developing personalized language model on small data sets, this paper proposes a personalized recurrent neural network language model based on transfer learning, and studies the application of social psychology in the model. A transfer learning training mode based on pre training word vector, pre training movie script data set, parameter fine-tuning and feature extraction classifier is designed. A personalized language model with high recognition degree is established on small data set, which reduces the confusion of the model and improves the performance of the model.

2022
语种英语
DOI10.1007/978-3-030-97874-7_113
发表期刊Lecture Notes on Data Engineering and Communications Technologies
ISSN2367-4512
卷号125页码:819-823
收录类别EI
引用统计
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/42250
专题中国科学院心理研究所
作者单位1.Institute of Psychology, CAS, Beijing; 100101, China
2.Department of Psychology, University of Chinese Academy of Sciences, Beijing; 100101, China
推荐引用方式
GB/T 7714
Sun, Yuqi,Zhou, Jie. Personalized Recycling of Social Psychology in the Context of Big Data in the Context of Transfer Learning[J]. Lecture Notes on Data Engineering and Communications Technologies,2022,125:819-823.
APA Sun, Yuqi,&Zhou, Jie.(2022).Personalized Recycling of Social Psychology in the Context of Big Data in the Context of Transfer Learning.Lecture Notes on Data Engineering and Communications Technologies,125,819-823.
MLA Sun, Yuqi,et al."Personalized Recycling of Social Psychology in the Context of Big Data in the Context of Transfer Learning".Lecture Notes on Data Engineering and Communications Technologies 125(2022):819-823.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, Yuqi]的文章
[Zhou, Jie]的文章
百度学术
百度学术中相似的文章
[Sun, Yuqi]的文章
[Zhou, Jie]的文章
必应学术
必应学术中相似的文章
[Sun, Yuqi]的文章
[Zhou, Jie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。