PSYCH OpenIR  > 社会与工程心理学研究室
基于眼动的决策策略识别方法及策略选择研究: 以风险决策为例
其他题名Eye-movement based strategy recognition and strategy selection: A study of risky choice
刘姝妤
导师梁竹苑
2022-06
摘要决策策略是将选项信息的初始知识转化为问题解决最终状态的一系列认知 过程。基于有限理性假设,为了应对生存环境中变化莫测的不确定性,个体需根 据环境和任务需求,从策略“工具箱”中选择合适的策略,即进行决策策略的选 择。人们究竟如何达成适应性的策略选择,依然是决策科学等多个学科共同关注 的理论构建和实证难题。以往决策研究中,策略识别主要是采用基于决策结果的 策略分类方法,并基于结构化模型比较来推断决策者所使用的决策策略。然而决 策结果的数据结构简单,单个试次的选择结果信息不足以揭示使用的策略类别, 往往须在聚合决策数据的层面识别策略,难以在选择单位粒度的层面实现策略识 别,阻碍了清晰准确描述决策者决策过程及策略选择的理论发展。此外,在备选 策略集没有定论的现状下,采用结构化模型比较方法对策略分类有较大的误判的 风险。因此,决策策略理论发展受制于策略识别方法的局限,当前研究亟需寻找 和发展能够表征和观测各种策略认知过程的方法。 本研究认为,眼动追踪数据中的顺序信息是表征决策策略的关键因素,因此以风险决策为例,尝试量化眼动信息中潜在的决策策略过程,探索了决策策略识 别的有效方法;并在方法研究的基础上,根据顺序信息对眼动搜索过程进行决策 过程的描述和分类,检验了决策者成本-收益权衡的策略选择假设,以探索决策 者的决策策略选择机制。 研究 1 重新分析了两个风险决策研究中的公开眼动数据集(Schoemann, et al., 2019; Schulte‐Mecklenbeck, et al., 2017)。两个研究要求被试遵循多种策略(期望 价值、占优启发式、最小最大启发式)或自由地做出风险选择。研究 1 比较了基 于两类指标的距离度量方法(不包含顺序信息的注视属性指标和包含顺序信息后 继表征矩阵、Scanmatch)对被试所使用决策策略的分类及聚类效果。基于 KNN 监督学习和 PAM 无监督学习的比较,研究 1 发现:1)在识别决策策略时,表征 顺序信息的距离测度方法更为有效:在监督学习的 KNN 分类中其预测准确率更 高,在无监督学习中,其聚类的互信息量更高;2)在无指导策略的自由风险选择 中,个体在决策策略上存在个体差异,在连续的选择中往往采用多种策略;且题 目难度越高,在自由选择中使用 EV 策略的人次越少。这一结果支持了成本-收益权衡的策略选择假设。 研究 2 旨在验证研究 1 中确立的距离测度方法的有效性,并重点考察了决策 者在无指导策略下的连续风险决策中的策略选择。研究2 的样本为 42 名大学生。 被试按照要求在双结果的风险选择任务中,分别遵循四种策略(期望价值、占优 启发式、最小最大启发式和相同权重)(研究 2a)或自由(研究 2b)做出风险选 择,同时收集其行为和眼动数据。研究 2a 验证了研究 1 的方法比较结果,发现 与研究假设一致,表征顺序的 Scanmatch 方法比仅表征注视属性的方法能更有效 的表征决策策略认知过程,且能扩展到新策略的识别。研究 2b 发现,在自由选 择时,被试的决策过程更多地类似于 EV 和 PH 策略;但增加决策者在特定题目 上使用策略的时间代价,并未发现其进行适应性的策略选择。 总之,本研究提出并在公开数据集和自编实验数据中检验了基于眼动注视顺 序信息识别决策策略的方法;基于监督学习的准确率、聚类分析的互信息量及降 维可视化的效果比较,发现基于眼动注视顺序的距离测度方法能够更有效地识别 决策策略;在自由选择状态下,决策者在连续决策中往往使用多种策略,且更多 地使用 EV 和 PH 策略,但未能发现一致性证据支持基于成本-收益权衡的适应性 策略选择假设。 本研究提出了一套距离测度和可视化的工具,能够从认知过程的角度,基于 各类数据之间的相对位置,来描述决策策略和自由选择的决策过程。研究结果可 为决策策略研究领域提供方法上的新途径,并推动决策策略领域的理论整合和发 展。
其他摘要Decision-making strategies are cognitive processes that resolve choice problems. Based on the hypothesis of limited rationality, researchers have proposed that decision makers select appropriate strategies from a "toolbox" of strategies depending on the environment and task requirements. In previous research, strategy recognition was mainly based on the classification of strategies using decision outcomes by comparison of structured models. However, the simplistic information underlying the decision outcome of a single trial may not be sufficient enough to reveal the real underlying decision strategies. The classification based on decision outcomes demands the behavioral data be at the aggregated-trials level, consequently it will be hard to identify strategies at the granularity of trial level. This structured model comparison approach also may suffer a risk of misclassifing strategies given that the strategy "toolbox" are lack of definite content. This methodological gaps may have hinder the theoretical development to describe the decision making process and strategy selection of decision makers. Therefore, there is an urgent need for current research to develop methods that can characterize and observe the underlying cognitive processes of decision making. Take the risky decision-making as an example, this thesis aimed to explore methods that can effectively quantify the underlying decision strategy selection process based on eye-movement process in two studies. The key assumption of this thesis is that the eye-movement search process in decision-making process can be characterized and classified by the sequential eye-tracking information. The thesis compared methods, used the best-performing method to characterize the decision-making process, and tested the cost-benefit trade-off hypothesis to explore how strategies are selected. The eye-movement data sets from two risky choice studies (Schoemann, et al., 2019; Schulte‐Mecklenbeck, et al., 2017) were re-analyzed in Study 1. Participants in both studies were instructed to make choices following the rules of several strategies (EV, PH, or MM) or make free risky choices. In study 1, two types of eye-movement distance measures were compared: distance mesure based on non-sequential information (eg. gaze features) and distance mesure based on sequential information (scanmatch and SR). Using the supervised classification (KNN) and the unsupervised clustering (PAM), Study 1 found that: 1) sequential information featured measures recognized decision strategies more effectively than gaze attributes featured measures: the former's prediction accuracy in KNN and clustering mutual information in PAM were both higher than the later; 2) in the free choice condition, individual differences in decision strategies selection were observed among participants, and participants tended to switch their strategies in successive choices. Meanwhile, the higher the computational difficulty of the risky item, the fewer participants used the EV strategy while making choices in the corresponding item. This result supports the cost-benefit trade-off hypothesis of strategy selection. Study 2 aimed to verify the distance measure established in study 1, and focused on the decision-strategy selection in free and successive choice without guidance strategy. The sample for study 2 was 42 college students. Participants were asked to make two-outcome risky choice following four guidance strategies (EV, PH, MM or EW) (study 2a) or without guidance strategy (study 2b). Meanwhile, behavioral and eye movement data were collected. Study 2a validated the results of the method comparison in Study 1 that sequential information featured measure Scanmatch recognized the cognitive process of decision strategy more effectively. Besides, the efficiency of Scanmatch extends to the identification of new strategies. Study 2b examined decision makers' strategy selection in sequential risky decisions in uninstructed free choice and found that decision makers' decision processes under free decision-making conditions were more similar to EV and PH strategies. However, increasing the time cost of decision makers using strategies on given items didn’t lead to adaptive strategy choice. In conlusion, this thesis found that the distance measure based on eye-movement sequence identifies decision strategies more effectively. This conclusion was based on method comparisons on publicly available datasets and validation on experimentally collected data, compared the accuracy of supervised learning, the mutual information of cluster analysis, and visualization of data after dimensionality reduction. After the application of the Scanmatch method to eye-movement data under free decision- making conditions, this thesis also found that individuals' choices can be generally classified into multiple strategies in successive risky choices, and their decision making process were more similar to EV and PH strategy. However, no consistent evidence was found to support the adaptive strategy selection hypothesis of cost-benefit trade-off. The thesis proposed and valiated a set of distance measures and visualization tools based on the relative positions of various types of data from the perspective of the cognitive process. The tool can be servered to describe the decision making process of decision strategies as well as free choices. These results may provide a new methodological approach to decision making research, thus may promote theoretical development in the field of decision making strategy.
关键词行为决策 决策策略 策略选择 眼动追踪 风险决策
学位类型硕士
语种中文
学位名称理学硕士
学位专业应用心理
学位授予单位中国科学院大学
学位授予地点中国科学院心理研究所
文献类型学位论文
条目标识符http://ir.psych.ac.cn/handle/311026/43188
专题社会与工程心理学研究室
推荐引用方式
GB/T 7714
刘姝妤. 基于眼动的决策策略识别方法及策略选择研究: 以风险决策为例[D]. 中国科学院心理研究所. 中国科学院大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
刘姝妤-基于眼动的决策策略识别方法及策略(4486KB)学位论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[刘姝妤]的文章
百度学术
百度学术中相似的文章
[刘姝妤]的文章
必应学术
必应学术中相似的文章
[刘姝妤]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。