PSYCH OpenIR  > 健康与遗传心理学研究室
基于面部行为分析的抑郁生态化识别技术研究
其他题名Research on Ecological Recognition technology of depression based on facial behavior analysis
汪晓阳
导师刘晓倩
2022-06
摘要抑郁是一种对患者身心造成影响的情绪障碍状态,通常通过自我报告法测量或由心理医生结合患者语言陈述和非语言表现进行诊断。这些抑郁测量方法具有很高的信效度,但也存在耗时较长、不适用于日常监测和容易引起患者负向情绪等不足,所以这些方法在识别抑郁情绪、抑郁症状和抑郁症的部分场景下生态效度较低。基于此,本研究探索了基于面部行为分析的抑郁生态化识别方法,使其可以在传统抑郁识别方法不适用时作为替代方法。 针对已有抑郁自动识别方法的生态效度低、无法评价多维度模型的区分性和模型的可解释不足等问题,本研究为抑郁生态化识别设计了更加贴合抑郁测量场景的生态化识别方案、结合多维度量表信效度检验方法提出多维度模型的信效度检验方法、并使用统计分析方法探索抑郁的面部表达模式。本文设计并实施了三个研究,分别探索三种抑郁测量场景下,基于面部行为的抑郁生态化识别技术的可行性和有效性,研究结果显示: 1)大规模筛查场景下,提取普通自我介绍视频中的面部行为进行抑郁情绪生态化识别是可行且有效的。核脊回归模型的预测值与真实 CES-D 分数之间接近强相关水平(mae 为 4.7,mse 为 33.6,决定系数为 0.43,皮尔逊相关系数为0.69)。同时,与仅使用面部行为特征相比,面部特征与凝视特征的融合的抑郁情绪生态化识别效果更好。而在面部肌肉活动中,AU20、AU9、AU10、AU4 和 AU14 与抑郁情绪的程度最相关。 2)特定人群监测场景下,使用 Kinect 提取人们阅读中性文本时的面部关键点活动进行抑郁症状生态化识别是可行且有效的。研究共使用 SCL-90 的六个因子建立了六个心理症状的生态化识别模型,六个模型均具有较好的信度(分半数据预测结果之间的皮尔逊相关系数为 0.52-0.82)和效标效度(预测值与真实值之间的皮尔逊相关系数为 0.26-0.42)。多特质多方法矩阵的结果表明除抑郁模型外,其他模型的会聚效度较高,维度之间的区分效度较低。 3)临床场景下,使用 Kinect 提取抑郁症患者和健康人在阅读中性文本时的面部活动进行抑郁症生态化识别是可行且有效的。多因素多方差分析结果表明,阅读材料情绪极性对面部活动的影响不大,性别和诊断结果对面部活动的影响较大。男性抑郁症识别模型的准确率达 0.8,敏感性 0.81,特异性 0.78;女性抑郁症识别模型的准确率达 0.81,敏感性 0.88,特异性 0.69。同时,男性和女性抑郁症生态化识别模型在其他数据集上的检验结果表明模型具有较好的鲁棒性。 以上研究表明,基于面部行为的抑郁生态化识别方法适用于不同的抑郁测量场景,具有可行性和有效性。与以往的抑郁识别方法相比,本文创新性地根据不同的应用场景设计不同的生态化识别方案,提高了抑郁识别技术的生态效度。另外,研究二参考量表信效度检验方法对心理症状模型进行评估,为多维度模型评估提供了可行方法。本文还结合统计分析方法探索抑郁的面部表达模式,为未来抑郁识别的面部特征提取工作提供依据和参考。
其他摘要Depression is an emotional disorder that affects the body and mind of patients. Itis usually measured by self-report method or diagnosed by psychologists. Thosemethods also have some shortcomings, such as long time consuming, not suitable forrepeated measurement and leading negative emotions. Therefore, these methods havelow ecological validity in some scenes of identifying depression feelings, depressivesymptoms and depression. Based on this, this study explores the ecological recognitionmethod of depression based on facial behavior analysis, so that it can be used as analternative method when the traditional depression recognition methods are notapplicable. In view of the low ecological validity of the existing automatic depressionidentification methods, the inability to evaluate the discrimination of the model for themulti-dimensional model and the insufficient interpretability of the models, this studydesigned a suitable ecological perception method respectively for the three depressionmeasurement scenarios. Learnt from the reliability and validity test method of multi-dimensional scale, this paper put forward the reliability and validity test method ofmulti-dimensional model, and used statistical analysis method to explore the facialexpression pattern of depression. This paper designed and implemented three studies toexplore the feasibility and effectiveness of the ecological perception technology ofdepression based on facial behavior. The results show that: 1) In large-scale screening scene, it is feasible and effective to conduct ecologicalperception of depressive feelings based on facial behaviors from ordinary self-introduction videos. The results showed that the prediction effect of facial and gazefeatures was higher than that of only facial features. In all of the models we tried, theridge model with a periodic kernel showed the best performance. The model showed amutual fund R-squared (R2) value of 0.43 and a Pearson correlation coefficient (r) valueof 0.69 (p < 0.001). In all facial muscle activities, AU20, AU9, AU10, AU4 and AU14were most correlated with the degree of depressive feelings. 2) In the group monitoring scene, it is feasible and effective to conduct ecologicalperception of depression symptoms using facial key point activities when people readneutral text, which were extracted by Kinect. The study used six factors of SCL-90 toestablish six ecological perception models of psychological symptoms. The correlationcoefficients between the predicted values and actual scores were 0.26 to 0.42 (P < .01),which indicated good criterion validity. All models except depression had highconvergent validity but low discriminant validity. Results also indicated good levels ofsplit-half reliability [from 0.516 to 0.817] (P < .001). 3) In the clinical scene, it is feasible and effective to conduct ecological perceptionof major depression using facial movements, which were extracted by Kinect. Theresults of Multivariate ANOVA showed that the emotional polarity of reading materialshad little effect on facial movements, while gender and diagnostic results had greatereffect on facial movements. The accuracy, sensitivity and specificity of male depressionperception model were 0.8, 0.81 and 0.78 respectively; The accuracy, sensitivity andspecificity of female depression perception model were 0.81, 0.88 and 0.69 respectively.At the same time, the test results of the models on other data sets showed that the modelshave good robustness. The above researches showed that the ecological depression recognition methodbased on facial behavior is suitable for different depression measurement scenes, and itis feasible and effective. This paper creatively designs different ecological perceptionschemes according to different application scenarios, improving the ecological validity;evaluates the model with the reliability and validity test method of the scale, providinga feasible method for multi-dimensional model evaluation; and explores the facialexpression pattern of depression with the statistical analysis method, providing basisand reference for facial feature extraction of depression recognition in the future.
关键词生态化识别 抑郁 面部活动 机器学习
学位类型硕士
语种中文
学位名称理学硕士
学位专业应用心理
学位授予单位中国科学院大学
学位授予地点中国科学院心理研究所
文献类型学位论文
条目标识符http://ir.psych.ac.cn/handle/311026/43197
专题健康与遗传心理学研究室
推荐引用方式
GB/T 7714
汪晓阳. 基于面部行为分析的抑郁生态化识别技术研究[D]. 中国科学院心理研究所. 中国科学院大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
汪晓阳-基于面部行为分析的抑郁生态化识别(2015KB)学位论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[汪晓阳]的文章
百度学术
百度学术中相似的文章
[汪晓阳]的文章
必应学术
必应学术中相似的文章
[汪晓阳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。