PSYCH OpenIR  > 中国科学院行为科学重点实验室
Haphazard Cuboids Feature Extraction for Micro-expression Recognition
GANG WANG; SHUCHENG HUANG; ZIZHAO DONG
通讯作者Huang, Shucheng([email protected])
通讯作者邮箱shucheng huang ([email protected])
摘要

Facial micro-expressions can reveal a person's actual mental state and emotions. Therefore, it has crucial applications in many fields, such as lie detection, clinical medicine, and defense security. However, conventional methods have extracted features on designed facial regions to recognize micro-expressions, failing to effectively hit the micro-expression critical regions since micro-expressions are localized and asymmetric. Consequently, we propose the Haphazard Cuboids (HC) feature extraction method, which generates target regions by haphazard sampling technique and then extracts micro-expression spatio-temporal features. HC consists of two modules: spatial patches generation (SPG) and temporal segments generation (TSG). SPG is assigned to generate localized facial regions, and TSG is dedicated to generating temporal intervals. Through extensive experiments, we demonstrate the superiority of the proposed method. Afterward, we analyze two modules with conventional and deep-learning methods and find that they can significantly improve the performance of micro-expression recognition, respectively. Thereinto, we embed the SPG module into deep learning and experimentally demonstrate the effectiveness and superiority of our proposed sampling method in comparison with state-of-the-art methods. Furthermore, we analyze the TSG module with the maximum overlapping interval (MOI) method and find its coherence with the maximum interval of the apex frame distribution in CASME II and SAMM. Therefore, analogous to the human face's region of interest (ROI), micro-expressions also inherit similar ROI in the temporal dimension, whose positions are highly relevant to the intensive moment, i.e., the apex frame.

关键词Feature extraction haphazard sampling micro-expression recognition ROI.
2022
语种英语
DOI10.1109/ACCESS.2022.3214808
发表期刊IEEE Access
ISSN2169-3536
卷号10页码:110149-110162
期刊论文类型综述
收录类别EI
资助项目National Natural Science Foundation of China[62276118] ; National Natural Science Foundation of China[61772244] ; National Natural Science Foundation of China[U19B2032] ; National Natural Science Foundation of China[62106256]
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000873902600001
资助机构National Natural Science Foundation of China
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/43792
专题中国科学院行为科学重点实验室
作者单位1.School of Computer Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2.Key Laboratory of Behavior Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
推荐引用方式
GB/T 7714
GANG WANG,SHUCHENG HUANG,ZIZHAO DONG. Haphazard Cuboids Feature Extraction for Micro-expression Recognition[J]. IEEE Access,2022,10:110149-110162.
APA GANG WANG,SHUCHENG HUANG,&ZIZHAO DONG.(2022).Haphazard Cuboids Feature Extraction for Micro-expression Recognition.IEEE Access,10,110149-110162.
MLA GANG WANG,et al."Haphazard Cuboids Feature Extraction for Micro-expression Recognition".IEEE Access 10(2022):110149-110162.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Haphazard Cuboids Fe(2897KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[GANG WANG]的文章
[SHUCHENG HUANG]的文章
[ZIZHAO DONG]的文章
百度学术
百度学术中相似的文章
[GANG WANG]的文章
[SHUCHENG HUANG]的文章
[ZIZHAO DONG]的文章
必应学术
必应学术中相似的文章
[GANG WANG]的文章
[SHUCHENG HUANG]的文章
[ZIZHAO DONG]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。