PSYCH OpenIR  > 中国科学院行为科学重点实验室
Predicting coarse-grained semantic features in language comprehension: evidence from ERP representational similarity analysis and Chinese classifier
Zirui Huang1,2; Chen Feng1,3; Qu QQ(屈青青)1,3
第一作者Zirui Huang
通讯作者邮箱[email protected]
心理所单位排序1
摘要

Existing studies demonstrate that comprehenders can predict semantic information during language comprehension. Most evidence comes from a highly constraining context, in which a specific word is likely to be predicted. One question that has been investigated less is whether prediction can occur when prior context is less constraining for predicting specific words. Here, we aim to address this issue by examining the prediction of animacy features in low-constraining context, using electroencephalography (EEG), in combination with representational similarity analysis (RSA). In Chinese, a classifier follows a numeral and precedes a noun, and classifiers constrain animacy features of upcoming nouns. In the task, native Chinese Mandarin speakers were presented with either animate-constraining or inanimate-constraining classifiers followed by congruent or incongruent nouns. EEG amplitude analysis revealed an N400 effect for incongruent conditions, reflecting the difficulty of semantic integration when an incompatible noun is encountered. Critically, we quantified the similarity between patterns of neural activity following the classifiers. RSA results revealed that the similarity between patterns of neural activity following animate-constraining classifiers was greater than following inanimate-constraining classifiers, before the presentation of the nouns, reflecting pre-activation of animacy features of nouns. These findings provide evidence for the prediction of coarse-grained semantic feature of upcoming words.

关键词semantic prediction pre-activation of semantic features Chinese classifier EEG representational similarity analysis
2023
DOI10.1093/cercor/bhad116
发表期刊Cerebral Cortex
期刊论文类型实证研究
URL查看原文
收录类别SCI
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/44946
专题中国科学院行为科学重点实验室
通讯作者Qu QQ(屈青青)
作者单位1.Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
2.Faculty of Linguistics, Philology and Phonetics, University of Oxford, Oxford OX1 2HG, United Kingdom
3.Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
第一作者单位中国科学院心理研究所
通讯作者单位中国科学院心理研究所
推荐引用方式
GB/T 7714
Zirui Huang,Chen Feng,Qu QQ. Predicting coarse-grained semantic features in language comprehension: evidence from ERP representational similarity analysis and Chinese classifier[J]. Cerebral Cortex,2023.
APA Zirui Huang,Chen Feng,&Qu QQ.(2023).Predicting coarse-grained semantic features in language comprehension: evidence from ERP representational similarity analysis and Chinese classifier.Cerebral Cortex.
MLA Zirui Huang,et al."Predicting coarse-grained semantic features in language comprehension: evidence from ERP representational similarity analysis and Chinese classifier".Cerebral Cortex (2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Huang, Feng, Qu, 202(1176KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zirui Huang]的文章
[Chen Feng]的文章
[Qu QQ(屈青青)]的文章
百度学术
百度学术中相似的文章
[Zirui Huang]的文章
[Chen Feng]的文章
[Qu QQ(屈青青)]的文章
必应学术
必应学术中相似的文章
[Zirui Huang]的文章
[Chen Feng]的文章
[Qu QQ(屈青青)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。