PSYCH OpenIR
MER 2023: Multi-label Learning, Modality Robustness, and Semi-Supervised Learning
Lian, Zheng1; Sun, Haiyang2; Sun, Licai2; Zhao, Jinming3; Liu, Ye4; Liu, Bin5; Yi, Jiangyan5; Wang, Meng6; Cambria, Erik7; Zhao, Guoying8; Schuller, Björn W.9; Tao, Jianhua10
摘要

Over the past few decades, multimodal emotion recognition has made remarkable progress with the development of deep learning. However, existing technologies are difficult to meet the demand for practical applications. To improve the robustness, we launch a Multimodal Emotion Recognition Challenge (MER 2023)1 to motivate global researchers to build innovative technologies that can further accelerate and foster research. For this year’s challenge, we present three distinct sub-challenges: (1) MER-MULTI, in which participants recognize both discrete and dimensional emotions; (2) MER-NOISE, in which noise is added to test videos for modality robustness evaluation; (3) MER-SEMI, which provides large amounts of unlabeled samples for semi-supervised learning. In this paper, we test a variety of multimodal features and provide a competitive baseline for each sub-challenge. Our system achieves 77.57% on the F1 score and 0.82 on the mean squared error (MSE) for MER-MULTI, 69.82% on the F1 score and 1.12 on MSE for MER-NOISE, and 86.75% on the F1 score for MER-SEMI, respectively. Baseline code is available at https://github.com/zeroQiaoba/MER2023-Baseline.

关键词Multimodal Emotion Recognition Challenge (MER 2023) multilabel learning modality robustness semi-supervised learning
2023
语种英语
发表期刊arXiv
页码10
收录类别EI
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/44956
专题中国科学院心理研究所
作者单位1.Institute of Automation, Chinese Academy of Sciences, Beijing, China
2.University of Chinese, Academy of Sciences, Beijing, China
3.Renmin University of China, Beijing, China
4.Institute of Psychology, CAS, Beijing, China
5.Institute of Automation, CAS, Beijing, China
6.Ant Group, Beijing, China
7.Nanyang Technological University, Singapore
8.University of Oulu, Oulu, Finland
9.Imperial College London, London, United Kingdom
10.Tsinghua University, Beijing, China
推荐引用方式
GB/T 7714
Lian, Zheng,Sun, Haiyang,Sun, Licai,et al. MER 2023: Multi-label Learning, Modality Robustness, and Semi-Supervised Learning[J]. arXiv,2023:10.
APA Lian, Zheng.,Sun, Haiyang.,Sun, Licai.,Zhao, Jinming.,Liu, Ye.,...&Tao, Jianhua.(2023).MER 2023: Multi-label Learning, Modality Robustness, and Semi-Supervised Learning.arXiv,10.
MLA Lian, Zheng,et al."MER 2023: Multi-label Learning, Modality Robustness, and Semi-Supervised Learning".arXiv (2023):10.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
MER 2023_ Multi-labe(913KB)期刊论文作者接受稿限制开放CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lian, Zheng]的文章
[Sun, Haiyang]的文章
[Sun, Licai]的文章
百度学术
百度学术中相似的文章
[Lian, Zheng]的文章
[Sun, Haiyang]的文章
[Sun, Licai]的文章
必应学术
必应学术中相似的文章
[Lian, Zheng]的文章
[Sun, Haiyang]的文章
[Sun, Licai]的文章
相关权益政策
暂无数据
收藏/分享
文件名: MER 2023_ Multi-label Learning, Modality Robustness, and Semi-Supervised Learning.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。