PSYCH OpenIR  > 脑与认知科学国家重点实验室
Flexible structure learning under uncertainty
Wang, Rui1,2; Gates, Vael3; Shen, Yuan4; Tino, Peter5; Kourtzi, Zoe6
第一作者Wang, Rui
通讯作者邮箱[email protected] (zoe kourtzi)
心理所单位排序1
摘要

Experience is known to facilitate our ability to interpret sequences of events and make predictions about the future by extracting temporal regularities in our environments. Here, we ask whether uncertainty in dynamic environments affects our ability to learn predictive structures. We exposed participants to sequences of symbols determined by first-order Markov models and asked them to indicate which symbol they expected to follow each sequence. We introduced uncertainty in this prediction task by manipulating the: (a) probability of symbol co-occurrence, (b) stimulus presentation rate. Further, we manipulated feedback, as it is known to play a key role in resolving uncertainty. Our results demonstrate that increasing the similarity in the probabilities of symbol co-occurrence impaired performance on the prediction task. In contrast, increasing uncertainty in stimulus presentation rate by introducing temporal jitter resulted in participants adopting a strategy closer to probability maximization than matching and improving in the prediction tasks. Next, we show that feedback plays a key role in learning predictive statistics. Trial-by-trial feedback yielded stronger improvement than block feedback or no feedback; that is, participants adopted a strategy closer to probability maximization and showed stronger improvement when trained with trial-by-trial feedback. Further, correlating individual strategy with learning performance showed better performance in structure learning for observers who adopted a strategy closer to maximization. Our results indicate that executive cognitive functions (i.e., selective attention) may account for this individual variability in strategy and structure learning ability. Taken together, our results provide evidence for flexible structure learning; individuals adapt their decision strategy closer to probability maximization, reducing uncertainty in temporal sequences and improving their ability to learn predictive statistics in variable environments.

关键词structure learning uncertainty perceptual decisions decision strategy vision
2023-08-03
语种英语
DOI10.3389/fnins.2023.1195388
发表期刊FRONTIERS IN NEUROSCIENCE
卷号17页码:14
期刊论文类型综述
收录类别SCI
出版者FRONTIERS MEDIA SA
WOS关键词OF-VIEW TEST ; NEURONAL OSCILLATIONS ; TEMPORAL STRUCTURE ; WORKING-MEMORY ; ATTENTION ; STRATEGY ; FEEDBACK ; BRAIN ; DYNAMICS ; ACCOUNT
WOS研究方向Neurosciences & Neurology
WOS类目Neurosciences
WOS记录号WOS:001048932800001
WOS分区Q2
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/45897
专题脑与认知科学国家重点实验室
通讯作者Kourtzi, Zoe
作者单位1.Chinese Acad Sci, Inst Psychol, CAS Ctr Excellence Brain Sci & Intelligence Techno, State Key Lab Brain & Cognit Sci, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Dept Psychol, Beijing, Peoples R China
3.Stanford Univ, Inst Human Ctr AI, Stanford, CA USA
4.Nottingham Trent Univ, Sch Sci & Technol, Nottingham, England
5.Univ Birmingham, Sch Comp Sci, Birmingham, England
6.Univ Cambridge, Dept Psychol, Cambridge, England
第一作者单位脑与认知科学国家重点实验室
推荐引用方式
GB/T 7714
Wang, Rui,Gates, Vael,Shen, Yuan,et al. Flexible structure learning under uncertainty[J]. FRONTIERS IN NEUROSCIENCE,2023,17:14.
APA Wang, Rui,Gates, Vael,Shen, Yuan,Tino, Peter,&Kourtzi, Zoe.(2023).Flexible structure learning under uncertainty.FRONTIERS IN NEUROSCIENCE,17,14.
MLA Wang, Rui,et al."Flexible structure learning under uncertainty".FRONTIERS IN NEUROSCIENCE 17(2023):14.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Flexible structure l(6037KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Rui]的文章
[Gates, Vael]的文章
[Shen, Yuan]的文章
百度学术
百度学术中相似的文章
[Wang, Rui]的文章
[Gates, Vael]的文章
[Shen, Yuan]的文章
必应学术
必应学术中相似的文章
[Wang, Rui]的文章
[Gates, Vael]的文章
[Shen, Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。