Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium | |
Zhu, Xi1,2; Kim, Yoojean2; Ravid, Orren2; He, Xiaofu1; Suarez-Jimenez, Benjamin3; Zilcha-Mano, Sigal4; Lazarov, Amit5; Lee, Seonjoo1,2; Abdallah, Chadi G.6,7; Angstadt, Michael8; Averill, Christopher L.6,7; Baird, C. Lexi9; Baugh, Lee A.10; Blackford, Jennifer U.11; Bomyea, Jessica12; Bruce, Steven E.13; Bryant, Richard A.14; Cao, Zhihong15; Choi, Kyle12; Cisler, Josh16; Cotton, Andrew S.17; Daniels, Judith K.18; Davenport, Nicholas D.19; Davidson, Richard J.20; Debellis, Michael D.9; Dennis, Emily L.21; Densmore, Maria22,23,24; deRoon-Cassini, Terri25; Disner, Seth G.19; El Hage, Wissam26; Etkin, Amit27; Fani, Negar28; Fercho, Kelene A.29; Fitzgerald, Jacklynn30; Forster, Gina L.31; Frijling, Jessie L.32; Geuze, Elbert33; Gonenc, Atilla34; Gordon, Evan M.35; Gruber, Staci34; Grupe, Daniel20; Guenette, Jeffrey P.36; Haswell, Courtney C.9; Herringa, Ryan J.37; Herzog, Julia38; Hofmann, David Bernd39; Hosseini, Bobak40; Hudson, Anna R.41; Huggins, Ashley A.9; Ipser, Jonathan C.42; Jahanshad, Neda43; Jia-Richards, Meilin44; Jovanovic, Tanja45; Kaufman, Milissa L.46; Kennis, Mitzy33; King, Anthony8; Kinzel, Philipp47,48; Koch, Saskia B. J.49; Koerte, Inga K.47,48; Koopowitz, Sheri M.42; Korgaonkar, Mayuresh S.50; Krystal, John H.7; Lanius, Ruth51; Larson, Christine L.52; Lebois, Lauren A. M.53,54; Li, Gen55; Liberzon, Israel56; Lu, Guang Ming57; Luo, Yifeng15; Magnotta, Vincent A.58; Manthey, Antje59; Maron-Katz, Adi27; May, Geoffery60; Mclaughlin, Katie61; Mueller, Sven C.41; Nawijn, Laura62; Nelson, Steven M.63; Neufeld, Richard W. J.22,23,24; Nitschke, Jack B.20; O'Leary, Erin M.17; Olatunji, Bunmi O.64; Olff, Miranda32; Peverill, Matthew65; Phan, K. Luan66; Qi, Rongfeng57; Quide, Yann14,67; Rektor, Ivan68; Ressler, Kerry53,54; Riha, Pavel68; Ross, Marisa69; Rosso, Isabelle M.53,54; Salminen, Lauren E.43; Sambrook, Kelly65; Schmahl, Christian38; Shenton, Martha E.48; Sheridan, Margaret70; Shih, Chiahao17; Sicorello, Maurizio38; Sierk, Anika59; Simmons, Alan N.71; Simons, Raluca M.72; Simons, Jeffrey S.72; Sponheim, Scott R.19,73; Stein, Murray B.12; Stein, Dan J.42; Stevens, Jennifer S.28; Straube, Thomas39; Sun, Delin9; Theberge, Jean22,23,24; Thompson, Paul M.43; Thomopoulos, Sophia I.43; van der Wee, Nic J. A.74; van der Werff, Steven J. A.74; van Erp, Theo G. M.75; van Rooij, Sanne J. H.28; van Zuiden, Mirjam32; Varkevisser, Tim33; Veltman, Dick J.62; Vermeiren, Robert R. J. M.74; Walter, Henrik59; Wang, Li55,76![]() ![]() | |
第一作者 | Xi Zhu |
通讯作者邮箱 | yuval neria |
摘要 | Background: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. Methods: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. Results: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for D-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. Conclusion: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable. |
关键词 | Posttraumatic stress disorder Multimodal MRI Machine learning Deep learning Classification |
2023-12-01 | |
语种 | 英语 |
DOI | 10.1016/j.neuroimage.2023.120412 |
发表期刊 | NEUROIMAGE
![]() |
ISSN | 1053-8119 |
卷号 | 283页码:13 |
期刊论文类型 | 实证研究 |
收录类别 | SCI |
资助项目 | NIH[K01MH122774] ; NIH[R01MH117601] ; NIH[U54 EB020403] ; NIH[AT011267] ; NIH[MH111671] ; NIH[R61MH127005] ; NIH[CX001600] ; NIH[K01MH118467] ; NIH[K23 MH090366] ; NIH[T32GM007507] ; NIH[DA 1222/4-1] ; NIH[IK2RX002922] ; NIH[1073041] ; NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation[R61NS120249] ; German Research Foundation[T32MH018931] ; VA RRD Award[F31MH122047] ; National Health and Medical Research Council[27040] ; NIMH[MH111671] ; NIMH[MH119132] ; NIMH[MH097784] ; NIMH[MH129832] |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
WOS关键词 | POSTTRAUMATIC-STRESS-DISORDER ; RESTING-STATE FMRI ; TRAUMA SURVIVORS ; NETWORK ; BIOMARKERS ; MODELS |
WOS研究方向 | Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Neurosciences ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001109390600001 |
WOS分区 | Q1 |
资助机构 | NIH ; NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation ; German Research Foundation ; VA RRD Award ; National Health and Medical Research Council ; NIMH |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.psych.ac.cn/handle/311026/46736 |
专题 | 健康与遗传心理学研究室 |
通讯作者 | Neria, Yuval; Morey, Rajendra A. |
作者单位 | 1.Columbia Univ, Med Ctr, Dept Psychiat, New York, NY 10027 USA 2.New York State Psychiat Inst & Hosp, New York, NY 10032 USA 3.Univ Rochester, Rochester, NY USA 4.Univ Haifa, Haifa, Israel 5.Tel Aviv Univ, Tel Aviv, Israel 6.Baylor Coll Med, Houston, TX 77030 USA 7.Yale Univ, Sch Med, New Haven, CT USA 8.Univ Michigan, Ann Arbor, MI 48109 USA 9.Duke Univ, Durham, NC 27708 USA 10.Univ South Dakota, Sanford Sch Med, Vermillion, SD USA 11.Univ Nebraska Med Ctr, Munroe Meyer Inst, Omaha, NE USA 12.Univ Calif San Diego, La Jolla, CA 92093 USA 13.Univ Missouri, Dept Psychol Sci, Ctr Trauma Recovery, St Louis, MO 63121 USA 14.Univ New South Wales, Sch Psychol, Sydney, NSW, Australia 15.Jiangsu Univ, Affiliated Yixing Hosp, Dept Radiol, Yixing, Jiangsu, Peoples R China 16.Univ Texas Austin, Dept Psychiat, Austin, TX 78712 USA 17.Univ Toledo, 2801 W Bancroft St, Toledo, OH 43606 USA 18.Univ Groningen, Groningen, Netherlands 19.Minneapolis VA Hlth Care Syst, Minneapolis, MN USA 20.Univ Wisconsin, Madison, WI USA 21.Univ Utah, Sch Med, Salt Lake City, UT USA 22.Western Univ, Neurosci Program, Dept Psychol, London, ON, Canada 23.Western Univ, Neurosci Program, Dept Psychiat, London, ON, Canada 24.Univ British Columbia, Dept Psychol, Kelowna, BC, Canada 25.Med Coll Wisconsin, Milwaukee, WI 53226 USA 26.Univ Tours, CHRU Tours, INSERM, UMR 1253,CIC 1415, Tours, France 27.Stanford Univ, Stanford, CA 94305 USA 28.Emory Univ, Dept Psychiat & Behav Sci, Atlanta, GA 30322 USA 29.US Fed Aviat Adm, Civil Aerosp Med Inst, Oklahoma City, OK USA 30.Marquette Univ, Milwaukee, WI 53233 USA 31.Univ Otago, Dept Anat, Brain Hlth Res Ctr, Dunedin, New Zealand 32.Univ Amsterdam, Acad Med Ctr, Amsterdam Univ Med Ctr, Dept Psychiat, Amsterdam, Netherlands 33.Minist Def, Brain Res & Innovat Ctr, Utrecht, Netherlands 34.McLean Hosp, Cognit & Clin Neuroimaging Core, 115 Mill St, Belmont, MA 02178 USA 35.Washington Univ, Sch Med, Dept Radiol, St Louis, MO 63110 USA 36.Brigham & Womens Hosp, Div Neuroradiol, 75 Francis St, Boston, MA 02115 USA 37.Univ Wisconsin, Sch Med & Publ Hlth, Madison, WI USA 38.Heidelberg Univ, Heidelberg, Germany 39.Univ Munster, Munster, Germany 40.Univ Illinois, Chicago, IL USA 41.Univ Ghent, Ghent, Belgium 42.Univ Cape Town, Cape Town, South Africa 43.Univ Southern Calif, Imaging Genet Ctr, Mark & Mary Stevens Neuroimaging & Informat Inst, Keck Sch Med, Marina Del Rey, CA USA 44.Baylor Univ, Dept Psychol & Neurosci, Waco, TX 76798 USA 45.Wayne State Univ, Sch Med, Detroit, MI USA 46.McLean Hosp, Div Womens Mental Hlth, 115 Mill St, Belmont, MA 02178 USA 47.Ludwig Maximilian Univ Munich, Dept Child & Adolescent Psychiat Psychosomat & Ps, Munich, Germany 48.Brigham & Womens Hosp, Psychiat Neuroimaging Lab, 75 Francis St, Boston, MA 02115 USA 49.Radboud Univ Nijmegen, Ctr Cognit Neuroimaging, Donders Inst Brain Cognit & Behav, Nijmegen, Netherlands 50.Westmead Inst Med Res, Westmead, NSW, Australia 51.Western Univ, Dept Neurosci, London, ON, Canada 52.Univ Wisconsin, Milwaukee, WI 53201 USA 53.McLean Hosp, 115 Mill St, Belmont, MA 02178 USA 54.Harvard Med Sch, Boston, MA 02115 USA 55.Chinese Acad Sci, Inst Psychol, Beijing, Peoples R China 56.Texas A&M Univ, Hlth Sci Ctr, Psychiat & Behav Sci, College Stn, TX USA 57.Nanjing Univ, Sch Med, Jinling Hosp, Dept Med Imaging, Nanjing, Jiangsu, Peoples R China 58.Univ Iowa, Iowa City, IA USA 59.Charite Univ Med Berlin, Campus Charite Mitte, Berlin, Germany 60.VISN 17 Ctr Excellence Res Returning War Vet, Waco, TX USA 61.Harvard Univ, Boston, MA 02115 USA 62.Vrije Univ Amsterdam, VU Univ Med Ctr, Dept Psychiat, Amsterdam Univ Med Ctr, Amsterdam, Netherlands 63.Univ Minnesota, Dept Pediat, Minneapolis, MN 55455 USA 64.Vanderbilt Univ, Dept Psychol, Nashville, TN 37240 USA 65.Univ Washington, Seattle, WA 98195 USA 66.Ohio State Univ, Dept Psychiat & Behav Hlth, Columbus, OH 43210 USA 67.Neurosci Res Australia, Randwick, NSW, Australia 68.Masaryk Univ, Brno, Czech Republic 69.Northwestern Univ, Inst Policy Res, Northwestern Neighborhood & Networks Initiat, Evanston, IL USA 70.Univ N Carolina, Chapel Hill, NC 27515 USA 71.VA San Diego Healthcare Syst, Ctr Excellence Stress & Mental Hlth, San Diego, CA USA 72.Univ South Dakota, Vermillion, SD USA 73.Univ Minnesota, Minneapolis, MN USA 74.Leiden Univ, Med Ctr, Leiden, Netherlands 75.Univ Calif Irvine, Irvine, CA USA 76.Univ Chinese Acad Sci, Dept Psychol, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Zhu, Xi,Kim, Yoojean,Ravid, Orren,et al. Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium[J]. NEUROIMAGE,2023,283:13. |
APA | Zhu, Xi.,Kim, Yoojean.,Ravid, Orren.,He, Xiaofu.,Suarez-Jimenez, Benjamin.,...&Morey, Rajendra A..(2023).Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium.NEUROIMAGE,283,13. |
MLA | Zhu, Xi,et al."Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium".NEUROIMAGE 283(2023):13. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Neuroimaging-based c(4129KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论