PSYCH OpenIR  > 中国科学院行为科学重点实验室
Interpersonal Relationship Analysis with Dyadic EEG Signals via Learning Spatial-Temporal Patterns
Ji, Wenqi1; Liu, Fang2; Du, Xinxin1; Liu, Niqi1; Zhou, Chao3; Yu, Minjing4; Zhao, Guozhen5; Liu, Yong-Jin1
第一作者Wenqi Ji
通讯作者邮箱[email protected] (zhao, guozhen) ; [email protected] (liu, yong-jin)
心理所单位排序5
摘要

Interpersonal relationship quality is pivotal in social and occupational contexts. Existing analysis of interpersonal relationships mostly rely on subjective self-reports, whereas objective quantification remains challenging. In this paper, we propose a novel social relationship analysis framework using spatio-temporal patterns derived from dyadic EEG signals, which can be applied to quantitatively measure team cooperation in corporate team building, and evaluate interpersonal dynamics between therapists and patients in psychiatric therapy. First, we constructed a dyadic-EEG dataset from 72 pairs of participants with two relationships (stranger or friend) when watching emotional videos simultaneously. Then we proposed a deep neural network on dyadic-subject EEG signals, in which we combine the dynamic graph convolutional neural network for characterizing the interpersonal relationships among the EEG channels and 1-dimension convolution for extracting the information from the time sequence. To obtain the feature vectors from two EEG recordings that well represent the relationship of two subjects, we integrate deep canonical correlation analysis and triplet loss for training the network. Experimental results show that the social relationship type (stranger or friend) between two individuals can be effectively identified through their EEG data.

2024
DOI10.48550/arXiv.2401.03250
发表期刊arXiv
期刊论文类型实证研究
收录类别EI
引用统计
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/46775
专题中国科学院行为科学重点实验室
作者单位1.BNRist, Department of Computer Science and Technology, MOE, Key Laboratory of Pervasive Computing, Tsinghua University, China
2.State Key Laboratory of Media Convergence and Communication, Communication University of China, China
3.Institute of Software, Chinese Academy of Sciences, China
4.College of Intelligence and Computing, Tianjin University, China
5.CAS, Key Laboratory of Behavioral Science, Institute of Psychology, China
推荐引用方式
GB/T 7714
Ji, Wenqi,Liu, Fang,Du, Xinxin,et al. Interpersonal Relationship Analysis with Dyadic EEG Signals via Learning Spatial-Temporal Patterns[J]. arXiv,2024.
APA Ji, Wenqi.,Liu, Fang.,Du, Xinxin.,Liu, Niqi.,Zhou, Chao.,...&Liu, Yong-Jin.(2024).Interpersonal Relationship Analysis with Dyadic EEG Signals via Learning Spatial-Temporal Patterns.arXiv.
MLA Ji, Wenqi,et al."Interpersonal Relationship Analysis with Dyadic EEG Signals via Learning Spatial-Temporal Patterns".arXiv (2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Interpersonal Relati(1453KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ji, Wenqi]的文章
[Liu, Fang]的文章
[Du, Xinxin]的文章
百度学术
百度学术中相似的文章
[Ji, Wenqi]的文章
[Liu, Fang]的文章
[Du, Xinxin]的文章
必应学术
必应学术中相似的文章
[Ji, Wenqi]的文章
[Liu, Fang]的文章
[Du, Xinxin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。