PSYCH OpenIR
Probing Large Language Models from A Human Behavioral Perspective
Xintong Wang1; Xiaoyu Li2; Xingshan Li3; Chris Biemann1
2024
会议名称1st Workshop on Bridging Neurons and Symbols for Natural Language Processing and Knowledge Graphs Reasoning
会议录名称LREC-COLING 2024 - Workshop Proceedings
页码1-7
会议日期2024
会议地点不详
摘要

Large Language Models (LLMs) have emerged as dominant foundational models in modern NLP. However, the understanding of their prediction processes and internal mechanisms, such as feed-forward networks (FFN) and multi-head self-attention (MHSA), remains largely unexplored. In this work, we probe LLMs from a human behavioral perspective, correlating values from LLMs with eye-tracking measures, which are widely recognized as meaningful indicators of human reading patterns. Our findings reveal that LLMs exhibit a similar prediction pattern with humans but distinct from that of Shallow Language Models (SLMs). Moreover, with the escalation of LLM layers from the middle layers, the correlation coefficients also increase in FFN and MHSA, indicating that the logits within FFN increasingly encapsulate word semantics suitable for predicting tokens from the vocabulary.

关键词Large Language Models Interpretation and Understanding Eye-Tracking Human Behavioral
收录类别EI
语种英语
文献类型会议论文
条目标识符http://ir.psych.ac.cn/handle/311026/47857
专题中国科学院心理研究所
作者单位1.Department of Informatics, Universität Hamburg
2.Institute of Psychology, Chinese Academy of Sciences
3.School of Computer Science and Technology, Beijing Institute of Technology
推荐引用方式
GB/T 7714
Xintong Wang,Xiaoyu Li,Xingshan Li,et al. Probing Large Language Models from A Human Behavioral Perspective[C],2024:1-7.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Probing Large Langua(1166KB)会议论文 限制开放CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xintong Wang]的文章
[Xiaoyu Li]的文章
[Xingshan Li]的文章
百度学术
百度学术中相似的文章
[Xintong Wang]的文章
[Xiaoyu Li]的文章
[Xingshan Li]的文章
必应学术
必应学术中相似的文章
[Xintong Wang]的文章
[Xiaoyu Li]的文章
[Xingshan Li]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Probing Large Language Models from A Human Behavioral Perspective.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。