PSYCH OpenIR
Research on Psychological Test based on Large Language Model
Liu,Zhengzheng1,2,3; Kang,Yunfeng1,2,4; Li,Xinying1,2
2024
通讯作者邮箱liu, zhengzheng
会议名称2024 3rd International Conference on Robotics, Artificial Intelligence and Intelligent Control, RAIIC 2024
会议录名称2024 3rd International Conference on Robotics, Artificial Intelligence and Intelligent Control, RAIIC 2024
页码503-510
会议日期2024
会议地点不详
摘要

Traditional questionnaire-based psychological tests have many drawbacks, such as the subjects' inaccurate understanding of the questions, incomplete answers, disguised intentions, one-way communication, closed answers, etc. This paper proposes a psychological test system design scheme based on pre-trained large language model (LLM), which makes use of LLM's ability to learn and understand natural language and generate output. Complete the psychological test with the subjects through natural language human-computer dialogue.Taking the Cattell 16 Personality Factors Test (16PF) as an example, a natural corpus for large model training of psychological test was researched and compiled, and the psychological test model of two factors in 16PF was developed. Through test comparison, the psychological test model is better than the traditional questionnaire test effect.

DOI10.1109/RAIIC61787.2024.10670817
收录类别EI
语种英语
引用统计
文献类型会议论文
条目标识符http://ir.psych.ac.cn/handle/311026/48986
专题中国科学院心理研究所
作者单位1.Institute of Psychology, Chinese Academy of Sciences, Beijing, China
2.University of Chinese Academy of Sciences, Department of Psychology, Beijing, China
3.Dareway Software Co., Ltd, Beijing, China
4.Institute of Automation, Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Liu,Zhengzheng,Kang,Yunfeng,Li,Xinying. Research on Psychological Test based on Large Language Model[C],2024:503-510.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu,Zhengzheng]的文章
[Kang,Yunfeng]的文章
[Li,Xinying]的文章
百度学术
百度学术中相似的文章
[Liu,Zhengzheng]的文章
[Kang,Yunfeng]的文章
[Li,Xinying]的文章
必应学术
必应学术中相似的文章
[Liu,Zhengzheng]的文章
[Kang,Yunfeng]的文章
[Li,Xinying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。