Institutional Repository of Key Laboratory of Mental Health, CAS
Functional brain networks for learning predictive statistics | |
Giorgio, Joseph1; Karlaftis, Vasilis M.1; Wang, Rui1,2; Shen, Yuan3,4; Tino, Peter4; Welchman, Andrew1; Kourtzi, Zoe1 | |
第一作者 | Giorgio, Joseph |
通讯作者邮箱 | [email protected] (z. kourtzi) |
摘要 | Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. This skill relies on extracting regular patterns in space and time by mere exposure to the environment (i.e., without explicit feedback). Yet, we know little about the functional brain networks that mediate this type of statistical learning. Here, we test whether changes in the processing and connectivity of functional brain networks due to training relate to our ability to learn temporal regularities. By combining behavioral training and functional brain connectivity analysis, we demonstrate that individuals adapt to the environment's statistics as they change over time from simple repetition to probabilistic combinations. Further, we show that individual learning of temporal structures relates to decision strategy. Our fMRI results demonstrate that learning-dependent changes in fMRI activation within and functional connectivity between brain networks relate to individual variability in strategy. In particular, extracting the exact sequence statistics (i.e., matching) relates to changes in brain networks known to be involved in memory and stimulus-response associations, while selecting the most probable outcomes in a given context (i.e., maximizing) relates to changes in frontal and striatal networks. Thus, our findings provide evidence that dissociable brain networks mediate individual ability in learning behaviorally-relevant statistics. (C) 2017 The Authors. Published by Elsevier Ltd. |
关键词 | Brain Plasticity Fmri Functional Network Connectivity Individual Differences Statistical Learning |
2018-10-01 | |
语种 | 英语 |
DOI | 10.1016/j.cortex.2017.08.014 |
发表期刊 | CORTEX |
ISSN | 0010-9452 |
卷号 | 107页码:204-219 |
期刊论文类型 | Article |
收录类别 | SCI |
资助项目 | Engineering and Physical Sciences Research Council[EP/L000296/1] ; Wellcome Trust[095183/Z/10/Z] ; European Community[PITN-GA-2011-290011] ; European Community[PITN-GA-2012-316746] ; Leverhulme Trust[RF-2011-378] ; Biotechnology and Biological Sciences Research Council[H012508] ; Biotechnology and Biological Sciences Research Council[H012508] ; Leverhulme Trust[RF-2011-378] ; European Community[PITN-GA-2012-316746] ; European Community[PITN-GA-2011-290011] ; Wellcome Trust[095183/Z/10/Z] ; Engineering and Physical Sciences Research Council[EP/L000296/1] |
出版者 | ELSEVIER MASSON, CORPORATION OFFICE |
WOS关键词 | Medial Temporal-lobe ; Prefrontal Cortex ; Individual Variability ; Memory Retrieval ; Visual-attention ; Episodic Memory ; Neural Circuits ; Working-memory ; Basal Ganglia ; Implicit |
WOS研究方向 | Behavioral Sciences ; Neurosciences & Neurology |
WOS类目 | Behavioral Sciences ; Neurosciences |
WOS记录号 | WOS:000448092300018 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.psych.ac.cn/handle/311026/27401 |
专题 | 中国科学院心理健康重点实验室 |
通讯作者 | Kourtzi, Zoe |
作者单位 | 1.Univ Cambridge, Dept Psychol, Cambridge, England 2.Chinese Acad Sci, Inst Psychol, Key Lab Mental Hlth, Beijing, Peoples R China 3.Xian Jiaotong Liverpool Univ, Dept Math Sci, Suzhou, Peoples R China 4.Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England |
推荐引用方式 GB/T 7714 | Giorgio, Joseph,Karlaftis, Vasilis M.,Wang, Rui,et al. Functional brain networks for learning predictive statistics[J]. CORTEX,2018,107:204-219. |
APA | Giorgio, Joseph.,Karlaftis, Vasilis M..,Wang, Rui.,Shen, Yuan.,Tino, Peter.,...&Kourtzi, Zoe.(2018).Functional brain networks for learning predictive statistics.CORTEX,107,204-219. |
MLA | Giorgio, Joseph,et al."Functional brain networks for learning predictive statistics".CORTEX 107(2018):204-219. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Functional brain net(1849KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论