PSYCH OpenIR  > 中国科学院心理健康重点实验室
Hierarchical support vector machine for facial micro-expression recognition
Pan, Hang1; Xie, Lun1; Lv, Zeping2; Li, Juan3; Wang, Zhiliang1
第一作者Pan, Hang
通讯作者邮箱(lun xie) [email protected]
心理所单位排序3
摘要

The sample category distribution of spontaneous facial micro-expression datasets is unbalanced, due to the experimental environment, collection equipment, and individualization of subjects, which brings great challenges to micro-expression recognition. Therefore, this paper introduces a micro-expression recognition model based on the Hierarchical Support Vector Machine (H-SVM) to reduce the interference of sample category distribution imbalance. First, we calculated the position of the apex frame in the micro-expression image sequence. To keep micro-expression frames balanced, we sparsely sample the images sequence according to the apex frame. Then, the Low-level Descriptors of the region of interest of the micro-expression image sequence and the High-level Descriptors of apex frame are extracted. Finally, the H-SVM model is used to classify the fusion features of different levels. The experimental results on SMIC, CAMSE2, SAMM, and their composite datasets show that our method can achieve superior performance in micro-expression recognition.

关键词Micro-expression recognition Sample imbalance Features fusion Hierarchical support vector machine
2020-08-21
语种英语
DOI10.1007/s11042-020-09475-4
发表期刊MULTIMEDIA TOOLS AND APPLICATIONS
ISSN1380-7501
页码31451–31465
期刊论文类型article
收录类别SCI
资助项目National Key R&D Program of China[2018YFC 2001700] ; National Natural Science Foundation of China[61672093] ; Beijing Municipal Natural Science Foundation[L192005] ; Advanced Innovation Center for Intelligent Robots and Systems Open Research Project[2018IRS01]
出版者SPRINGER
WOS关键词BINARY PATTERNS ; CLASSIFICATION
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000561259300001
资助机构National Key R&D Program of China ; National Natural Science Foundation of China ; Beijing Municipal Natural Science Foundation ; Advanced Innovation Center for Intelligent Robots and Systems Open Research Project
引用统计
被引频次:16[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/32493
专题中国科学院心理健康重点实验室
通讯作者Xie, Lun
作者单位1.Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing, Peoples R China
2.Natl Res Ctr Rehabil Tech Aids, Affiliated Rehabil Hosp, Beijing, Peoples R China
3.Chinese Acad Sci, Ctr Aging Psychol, Inst Psychol, Key Lab Mental Hlth, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Pan, Hang,Xie, Lun,Lv, Zeping,et al. Hierarchical support vector machine for facial micro-expression recognition[J]. MULTIMEDIA TOOLS AND APPLICATIONS,2020:31451–31465.
APA Pan, Hang,Xie, Lun,Lv, Zeping,Li, Juan,&Wang, Zhiliang.(2020).Hierarchical support vector machine for facial micro-expression recognition.MULTIMEDIA TOOLS AND APPLICATIONS,31451–31465.
MLA Pan, Hang,et al."Hierarchical support vector machine for facial micro-expression recognition".MULTIMEDIA TOOLS AND APPLICATIONS (2020):31451–31465.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Hierarchical support(1277KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pan, Hang]的文章
[Xie, Lun]的文章
[Lv, Zeping]的文章
百度学术
百度学术中相似的文章
[Pan, Hang]的文章
[Xie, Lun]的文章
[Lv, Zeping]的文章
必应学术
必应学术中相似的文章
[Pan, Hang]的文章
[Xie, Lun]的文章
[Lv, Zeping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。