Institutional Repository of Key Laboratory of Mental Health, CAS
Hierarchical support vector machine for facial micro-expression recognition | |
Pan, Hang1; Xie, Lun1; Lv, Zeping2; Li, Juan3; Wang, Zhiliang1 | |
第一作者 | Pan, Hang |
通讯作者邮箱 | (lun xie) [email protected] |
心理所单位排序 | 3 |
摘要 | The sample category distribution of spontaneous facial micro-expression datasets is unbalanced, due to the experimental environment, collection equipment, and individualization of subjects, which brings great challenges to micro-expression recognition. Therefore, this paper introduces a micro-expression recognition model based on the Hierarchical Support Vector Machine (H-SVM) to reduce the interference of sample category distribution imbalance. First, we calculated the position of the apex frame in the micro-expression image sequence. To keep micro-expression frames balanced, we sparsely sample the images sequence according to the apex frame. Then, the Low-level Descriptors of the region of interest of the micro-expression image sequence and the High-level Descriptors of apex frame are extracted. Finally, the H-SVM model is used to classify the fusion features of different levels. The experimental results on SMIC, CAMSE2, SAMM, and their composite datasets show that our method can achieve superior performance in micro-expression recognition. |
关键词 | Micro-expression recognition Sample imbalance Features fusion Hierarchical support vector machine |
2020-08-21 | |
语种 | 英语 |
DOI | 10.1007/s11042-020-09475-4 |
发表期刊 | MULTIMEDIA TOOLS AND APPLICATIONS |
ISSN | 1380-7501 |
页码 | 31451–31465 |
期刊论文类型 | article |
收录类别 | SCI |
资助项目 | National Key R&D Program of China[2018YFC 2001700] ; National Natural Science Foundation of China[61672093] ; Beijing Municipal Natural Science Foundation[L192005] ; Advanced Innovation Center for Intelligent Robots and Systems Open Research Project[2018IRS01] |
出版者 | SPRINGER |
WOS关键词 | BINARY PATTERNS ; CLASSIFICATION |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000561259300001 |
资助机构 | National Key R&D Program of China ; National Natural Science Foundation of China ; Beijing Municipal Natural Science Foundation ; Advanced Innovation Center for Intelligent Robots and Systems Open Research Project |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.psych.ac.cn/handle/311026/32493 |
专题 | 中国科学院心理健康重点实验室 |
通讯作者 | Xie, Lun |
作者单位 | 1.Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing, Peoples R China 2.Natl Res Ctr Rehabil Tech Aids, Affiliated Rehabil Hosp, Beijing, Peoples R China 3.Chinese Acad Sci, Ctr Aging Psychol, Inst Psychol, Key Lab Mental Hlth, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Pan, Hang,Xie, Lun,Lv, Zeping,et al. Hierarchical support vector machine for facial micro-expression recognition[J]. MULTIMEDIA TOOLS AND APPLICATIONS,2020:31451–31465. |
APA | Pan, Hang,Xie, Lun,Lv, Zeping,Li, Juan,&Wang, Zhiliang.(2020).Hierarchical support vector machine for facial micro-expression recognition.MULTIMEDIA TOOLS AND APPLICATIONS,31451–31465. |
MLA | Pan, Hang,et al."Hierarchical support vector machine for facial micro-expression recognition".MULTIMEDIA TOOLS AND APPLICATIONS (2020):31451–31465. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Hierarchical support(1277KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论