PSYCH OpenIR  > 社会与工程心理学研究室
Public discourse and sentiment during the COVID 19 pandemic: Using Latent Dirichlet Allocation for topic modeling on Twitter
Xue, Jia1,2; Chen, Junxiang3; Chen, Chen4; Zheng, Chengda2; Li, Sijia5,6; Zhu, Tingshao5
第一作者Xue, Jia
通讯作者邮箱[email protected]
心理所单位排序5
摘要

The study aims to understand Twitter users' discourse and psychological reactions to COVID-19. We use machine learning techniques to analyze about 1.9 million Tweets (written in English) related to coronavirus collected from January 23 to March 7, 2020. A total of salient 11 topics are identified and then categorized into ten themes, including "updates about confirmed cases," "COVID-19 related death," "cases outside China (worldwide)," "COVID-19 outbreak in South Korea," "early signs of the outbreak in New York," "Diamond Princess cruise," "economic impact," "Preventive measures," "authorities," and "supply chain." Results do not reveal treatments and symptoms related messages as prevalent topics on Twitter. Sentiment analysis shows that fear for the unknown nature of the coronavirus is dominant in all topics. Implications and limitations of the study are also discussed.

2020-09-25
DOI10.1371/journal.pone.0239441
发表期刊PLOS ONE
ISSN1932-6203
卷号15期号:9页码:12
期刊论文类型实证研究
收录类别SCI
资助项目National Natural Science Foundation of China[31700984] ; Artificial Intelligence Lab for Justice at University of Toronto, Canada
出版者PUBLIC LIBRARY SCIENCE
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000576266600002
WOS分区Q2
资助机构National Natural Science Foundation of China ; Artificial Intelligence Lab for Justice at University of Toronto, Canada
引用统计
被引频次:164[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/32968
专题社会与工程心理学研究室
通讯作者Zhu, Tingshao
作者单位1.Univ Toronto, Factor Inwentash Fac Social Work, Toronto, ON, Canada
2.Univ Toronto, Fac Informat, Toronto, ON, Canada
3.Univ Pittsburgh, Sch Med, Pittsburgh, PA USA
4.Univ Toronto, Middleware Syst Res Grp, Toronto, ON, Canada
5.Chinese Acad Sci, Inst Psychol, Beijing, Peoples R China
6.Univ Chinese Acad Sci, Dept Psychol, Beijing, Peoples R China
通讯作者单位中国科学院心理研究所
推荐引用方式
GB/T 7714
Xue, Jia,Chen, Junxiang,Chen, Chen,et al. Public discourse and sentiment during the COVID 19 pandemic: Using Latent Dirichlet Allocation for topic modeling on Twitter[J]. PLOS ONE,2020,15(9):12.
APA Xue, Jia,Chen, Junxiang,Chen, Chen,Zheng, Chengda,Li, Sijia,&Zhu, Tingshao.(2020).Public discourse and sentiment during the COVID 19 pandemic: Using Latent Dirichlet Allocation for topic modeling on Twitter.PLOS ONE,15(9),12.
MLA Xue, Jia,et al."Public discourse and sentiment during the COVID 19 pandemic: Using Latent Dirichlet Allocation for topic modeling on Twitter".PLOS ONE 15.9(2020):12.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Public discourse and(1113KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xue, Jia]的文章
[Chen, Junxiang]的文章
[Chen, Chen]的文章
百度学术
百度学术中相似的文章
[Xue, Jia]的文章
[Chen, Junxiang]的文章
[Chen, Chen]的文章
必应学术
必应学术中相似的文章
[Xue, Jia]的文章
[Chen, Junxiang]的文章
[Chen, Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。